P:\zmn\85\85636\M85636_01_BER_11D.DOC: 16. 01. 2012

MÜLLER-BBM

Müller-BBM GmbH Niederlassung Gelsenkirchen Am Bugapark 1 45899 Gelsenkirchen

Telefon +49 (209) 98308-0 Telefax +49 (209) 98308-11

www.MuellerBBM.de

Dipl.-Geol. Boris Zimmermann Telefon +49 (209) 98308-28 Boris.Zimmermann@MuellerBBM.de

16. Dezember 2011 M85 636/1 zmn

Vertiefung der Außenems

Stickstoff-Immissionsprognose für Bauphase und Betrieb

Bericht Nr. M85 636/1

Auftraggeber: IBL Umweltplanung GmbH

Bahnhofstr. 14a 26122 Oldenburg

Bearbeitet von: Dipl.-Geol. Boris Zimmermann

Dr. Rainer Bösinger

M. Sc. Geogr. Silke Gerlach

Berichtsumfang: Insgesamt 99 Seiten davon

69 Seiten Textteil und 30 Seiten Anhang

Zertifiziertes Qualitätsmanagementsystem nach ISO 9001 Akkreditiertes Prüflaboratorium nach ISO/IEC 17025 Müller-BBM GmbH Niederl. Gelsenkirchen, HRB München 86143

Inhaltsverzeichnis

1	Situation und Aufgabenstellung	4
2	Beschreibung der örtlichen Verhältnisse, des Vorhabens und des Untersuchungsrahmens	5
2.1	Örtliche Verhältnisse	5
2.2	Vorhaben	5
2.3	Untersuchungsrahmen	7
3	Emissionsmodellierung	11
3.1	Bauphase	11
3.2	Betriebsphase	15
4	Emissionen anderer Vorhaben	22
4.1	Allgemeines	22
4.2	Verbesserung der Fahrrinne Eemshaven-Nordzee	22
4.3	Anlagenemissionen Eemshaven	24
5	Weitere Eingangsgrößen	26
5.1	Rechengebiet und räumliche Auflösung	26
5.2	Rauigkeitslänge	27
5.3	Berücksichtigung der statistischen Unsicherheit	27
5.4	Meteorologische Daten	27
5.5	Berücksichtigung von Bebauung und Gelände	29
5.6	Verwendetes Ausbreitungsmodell	30
5.7	Hinweise zur Ermittlung der Stickstoffkonzentration in der Luft	30
5.8	Hinweise zur Ermittlung der Stickstoffdeposition	30
6	Immissions-Vorbelastung	32
6.1	Stickstoffoxidkonzentration in der Luft	32
6.2	Stickstoffdeposition	34
7	Immissions-Zusatz- und Gesamtbelastung	36
7.1	Allgemeines	36
7.2	Stickstoffoxidkonzentration in der Luft	37
7.3	Stickstoffdeposition	51
8	Zusammenfassung	66
9	Grundlagen und Literatur	68

MÜLLER-BBM

- Anhang A: Stickstoffoxid- und Ammoniakemissionsquellen der Fahrrinne Eemshaven-Nordzee
- Anhang B: Räumliche Verteilung der NOx-Immissions-Zusatz- und Gesamtbelas tung im Betrachtungsbereich
- Anhang C: Räumliche Verteilung der N-Depositions-Zusatz- und Gesamtbelastung im Betrachtungsbereich

P:\zmn\85\85636\M85636 01 BER 11D.DOC:16.01.2012

1 Situation und Aufgabenstellung

Das Land Niedersachsen und die Emder Hafenwirtschaft streben eine Vertiefung der Außenems von Ems-km 40,7 bis Ems-km 74,6 an. In diesem rund 34 km langen Vorhabensbereich soll die Sollhöhe der Fahrrinne um bis zu 1,0 m abgesenkt werden.

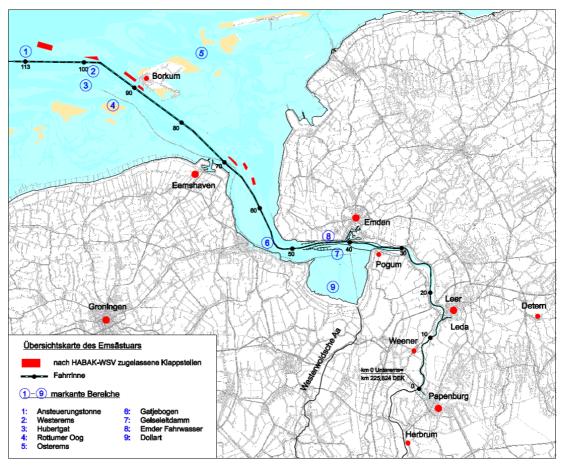
Die Gutachtergemeinschaft IBL Umweltplanung GmbH (IBL) und IMS Ingenieurgesellschaft mbH (IMS) bearbeitet seit Mai 2009 im Auftrag des Wasserschifffahrtsamts Emden (WSA Emden) das Projekt "Vertiefung der Außenems bis Emden". Der Auftrag beinhaltet u.a. die Erstellung verschiedener Umweltunterlagen (UVU, FFH-VU, LBP, Beitrag Wasserrahmenrichtlinie und Artenschutz) als Teil der Genehmigungsplanung.

Um gemäß den Anforderungen des Untersuchungsrahmens zur UVU vom 17.04.2009, Schutzgüter Mensch und Pflanzen sowie insbesondere in der FFH-VU eine belastbare Prognose vorhabensbedingter Wirkungen und Auswirkungen vorlegen zu können, ist die Erstellung einer Immissionsprognose zu vorhabensbedingten Stickstoffimmissionen und -depositionen erforderlich.

Die Müller-BBM GmbH wurde hierzu von der IBL beauftragt, die entsprechenden Emissions- und Immissionsberechnungen sowie die Auswertung der Immissionsvorbelastung durchzuführen. Eine Beurteilung und Bewertung der berechneten Immissionen erfolgt an anderer Stelle durch die IBL.

Es sind Untersuchungen zu den Stickstoffimmissionen für den Betrieb der Wasserstraße im *Ist-Zustand*, im *Prognose-Nullfall* und im *Prognose-Ausbaufall* sowie für die *Bauphase* durchzuführen.

Für den *Prognose-Ausbaufall* werden zudem Immissionsbeiträge anderer Vorhaben berücksichtigt, da diese nicht in den zugrunde gelegten Vorbelastungsdaten enthalten sind.


2 Beschreibung der örtlichen Verhältnisse, des Vorhabens und des Untersuchungsrahmens

2.1 Örtliche Verhältnisse

Das geplante Vorhaben wird in der Außenems realisiert. Diese bildet zusammen mit der Unterems das Emsästuar. Die Außenems umfasst dabei den Bereich von der Ansteuerungstonne bei Ems-km 113,0 bis Emden bei Ems-km 40,7. Stromaufwärts geht die Außems in die Unterems über [15].

Die Umgebung ist im wesentlichen schwach reliefiert. Die Geländehöhen bewegen sich zwischen 0 und ca. 20 m ü.NN.

Abbildung 1 zeigt die Einordnung des Emsästuars in die weitere Umgebung.

Abbildung 1. Geographische Einordnung des Emsästuars in die Umgebung einschließlich Charakteristisierung markanter Bereiche [15]

2.2 Vorhaben

Das Vorhaben erstreckt sich in der Außenems über den Streckenabschnitt von Emskm 40,7 bis Ems-km 74,6 (s. Abbildung 2).

In diesem rd. 34 km langen Vorhabensbereich soll die Sollsohle der Fahrrinne ohne lagemäßige Veränderungen um bis zu 1,0 m (Bezugshorizont Emder Fahrwasser)

abgesenkt werden, wobei sich die eigentlichen Nassbaggerungen auf den Streckenabschnitt zwischen Ems-km 40,7 und 68,0 (Eingriffsbereich) beschränkt. Der Schwerpunkt der Baggerungen liegt dabei im Bereich des Emder Fahrwassers zwischen Ems-km 40,7 und 52,0; hier ist flächenhaft über die gesamte Länge zu baggern. Im Bereich ab Ems-km 52,0 bis Ems-km 68,0 sind hingegen nur partielle Baggerungen erforderlich, da dieser Bereich signifikant von natürlichen Übertiefen geprägt ist. Baggerungen seewärts Ems-km 68,0 werden nicht erforderlich.

Die vorhandenen Fahrrinnenbreiten in den einzelnen Streckenabschnitten können unverändert bleiben, weil künftig keine anderen Schiffsbreiten erwartet werden. Aus nautischer Sicht besteht nach erster Einschätzung kein Erfordernis, den derzeitigen Verlauf der Fahrrinnentrasse zu modifizieren; ggf. könnte dies jedoch aus unterhaltungstechnischer Sicht positiv wirken, weshalb die Möglichkeiten einer geringfügigen Trassenverschwenkung im Bereich Knock / Gatjebogen nach Westen derzeit abgeprüft werden. Kurvenaufweitungen sind nicht vorgesehen.

Eine tabellarische Gesamtschau der vorstehenden Ausführungen (heute und nach Realisierung des Vorhabens) findet sich ergänzend in Tabelle 1.

Tabelle 1. Derzeitige Tiefenlagen der Fahrrinnensohle und Fahrrinnenbreiten im Emsästuar mit Überlagerung der zukünftigen Verhältnisse bei Realisierung der erwogenen Vertiefung der Fahrrinne um bis zu 1,0 m [15]

	Ems-km	heutiger Zustand	zukünftige Verhältnisse
er he I]	40,7 - 45,0	10,48 - 10,43	11,48 - 11,43
Tiefenlage der Fahrrinnensohle [m unter NN]	45,0 - 52,0	10,53 - 10,44	11,43 - 11,34
nlag nnei nter	52,0 - 68,0	10,84 - 10,60	11,34 - 11,10
iefe Ihrri m u	68,0 - 74,6	11,60 - 11,52	wie bisher
	74,6 – 113,0	14,02, fallend	wie bisher
der nne]	40,7 - 55,3	120 – 150	wie bisher
Breite (Fahrrin [m]	55,3 - 68,9	160 – 180	wie bisher
Bre Fa	68,9 – 113,0	200, gleichbleibend	wie bisher

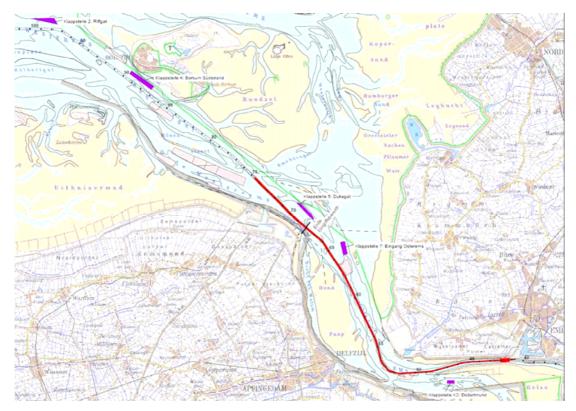


Abbildung 2. Lage des Vorhabensbereichs [17]

Eine detaillierte Vorhabensbeschreibung kann den Unterlagen zum Scoping-Termin [15] entnommen werden, denen auch die vorangestellte Beschreibung entstammt.

2.3 Untersuchungsrahmen

2.3.1 Untersuchungsgegenstand

Der Untersuchungsumfang umfasst die Ermittlung der Stickstoffeinträge aus dem zu betrachtenden Vorhaben (Emsvertiefung bis Emden ¹) innerhalb des skizzierten Betrachtungsbereich (Kapitel 2.3.3) für fünf verschiedene Szenarien (Kapitel 2.3.2).

Dabei werden nur die Schiffsverkehre berücksichtigt, welche sich im Zuge der geplanten Maßnahme gegenüber dem derzeitigen Bestand verändern. Dies sind die Verkehre der Stückgut-, Massengut- und Tankschiffe sowie der Fahrzeugtransportschiffe. Verkehre weiterer Schiffskategorien² unterliegen durch die geplante Maßnahme keinen Änderungen gegenüber dem Bestand. Die Berücksichtigung der Stickstoffeinträge dieser Schiffskategorien erfolgt über die Vorbelastung.

¹ Für den Prognose-Ausbaufall unter zusätzlicher Berücksichtigung der Stickstoffeinträge aus den Vorhaben "Verbesserung der Fahrrinne Eemshaven-Nordzee", "Multi fuel-Kraftwerk in Eemshaven", "1.200 MW Kraftwerk in Eemshaven", "1.600 MW Kohlekraftwerk in Eemshaven", "LNG Terminal / ELT in Eemshaven" sowie weiterer Vorhaben in Eemshaven.

² z. B. Schiffsbewegungen von Container-, Marine- und Fahrgastschiffen.

Untersuchungen zu weiteren Komponenten und Szenarien sowie die Betrachtung anderer Bereiche im Umfeld des Vorhabens sind nicht Gegenstand der hier vorliegenden Untersuchung.

2.3.2 Szenarien

Für die Beurteilung der zu erwartenden Auswirkungen werden nach [17] folgende fünf Szenarien untersucht:

Ist-Zustand

Der Ist-Zustand umfasst die bestehenden Verkehre von Stückgut-, Massengut-, Tank- und Fahrzeugtransportschiffen auf der Außenems (Ems-km 40,7 bis Ems-km 113) während des Jahres 2006.

Prognose-Nullfall

Der Prognose-Nullfall umfasst die für das Bezugsjahr 2025 prognostizierten Verkehre von Stückgut-, Massengut- und Tank- und Fahrzeugtransportschiffen im Bereich der Außenems (Ems-km 40,7 bis Emskm 113) im derzeitigen Ausbauzustand (ohne Vertiefung der Außenems von Ems-km 40,7 bis Ems-km 74,6).

Bauphase

Die Bauphase beinhaltet die Phase der Erstherstellung, d.h. der Vertiefung der Fahrrinne im Abschnitt Ems-km 40,7 bis Ems-km 74,6.

Nach derzeitigem Planungsstand sollen die Baumaßnahmen mittels zweier Hopperbagger durchgeführt werden. Es gibt allerdings auch Überlegungen, Wasserstrahlinjektionen durchzuführen oder Schneidkopfbagger einzusetzen. Die geplante Bauzeit wird mit einem halben Jahr angegeben.

Weiterer Vorhabensbereich sind die Klappstellen im Bereich Dollart und Außenems. Es werden überwiegend die Klappstellen 5 Dukegat und 7 Eingang Osterems angefahren. Teilmengen werden zusätzlich in die Klappstellen 4 Borkum Südstrand und K2 Dollartmund verbracht.

Prognose-Ausbaufall

Der Prognose-Ausbaufall umfasst die für das Bezugsjahr 2025 prognostizierten Verkehre von Stückgut-, Massengut- und Tank- und Fahrzeugtransportschiffen im Bereich der Außenems (Ems-km 40,7 bis Ems-km 113) mit Vertiefung der Außenems von Ems-km 40,7 bis Ems-km 74,6.

Für den Prognose-Ausbaufall inklusive anderer Vorhaben sind neben den vorhabenseigenen Merkmalen zusätzlich durch andere geplante Vorhaben bedingte Stickstoffimmissionen zu berücksichtigen. Als andere Vorhaben sind einzubeziehen:

- Verbesserung der Fahrrinne Eemshaven-Nordzee, Multi fuel-Kraftwerk in Eemshaven (NUON Power Generation BV),
- 1.200 MW Kraftwerk in Eemshaven (ADVANCED POWER AG),

- 1.600 MW Kohlekraftwerk in Eemshaven (RWE Power AG),
- LNG Terminal / ELT in Eemshaven (Gasunie, Vopak, Essent) sowie
- weiterer Vorhaben in Eemshaven.

Die Maßnahmen zur Unterhaltung der Außenems bis Emden sowie der Hafenzufahrten nach Eemshaven, Borkum und Delfzijl sind hinsichtlich ihrer Stickstoffeinträge bereits Bestandteil der Vorbelastung und gehen daher über diese in die Gesamt-Immissionsbelastung ein. Auf eine explizite Berücksichtigung dieser Vorhaben kann daher im Zuge der vorliegenden Untersuchung verzichtet werden [17].

In einer abschließenden Betrachtung sind die vorhabensbedingten NO_x-Konzentrationen und N-Depositionen

- in der Bauphase unter Berücksichtigung der Vorbelastung und
- in der Betriebsphase (Prognose-Ausbaufall) unter Berücksichtigung der Vorbelastung sowie der Belastung durch andere Vorhaben

darzustellen.

2.3.3 Betrachtungsbereich der Immissionsprognose

Gemäß [17] ist der Betrachtungsbereich der Immissionsprognose auf die Bereiche Borkum, Memmert, Juist und Norderney auf deutscher Seite sowie Rottumerplaat und Rottumeroog auf niederländischer Seite begrenzt. Die genaue Abgrenzung des Betrachtungsbereiches kann der Abbildung 3 entnommen werden.

Die Lage der Emissionsquellen und die Lage des Betrachtungsbereichs weichen dabei in Teilen deutlich voneinander ab. Zudem umfasst der Betrachtungsbereich ein sehr weiträumiges Areal. Beide Umstände wirken sich u.a. auch auf die Wahl des zu Grunde zu legenden Rechengitters aus (s. Kapitel 5.1)

Die Darstellung der Untersuchungsergebnisse erfolgt einzig für den Betrachtungsbereich.

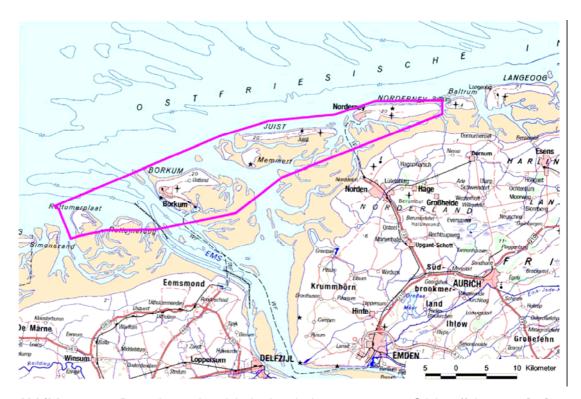


Abbildung 3. Betrachtungsbereich der Immissionsprognose zu Stickstoffeinträgen [17]

P:\zmn\85\85636\M85636 01 BER 11D.DOC:16. 01. 2012

3 Emissionsmodellierung

3.1 Bauphase

Die Unterlage zum Scoping-Termin [15] nennt die in Tabelle 2 zusammengefassten Daten bzgl. der Zahl der Umläufe, der Dauer eines Umlaufs und der Gesamtzeit der Verklappung in Tagen für die vier Klappstellen. Darin sind die Gesamt-Baggermengen für die Initialbaggerung und die Unterhaltungsbaggerungen im Jahr der Herstellung sowie im ersten Jahr nach dem Ausbau zusammengefasst.

Tabelle 2. Verklappungskonzept für die anfallenden Baggermengen aus dem Streckenabschnitt Ems-km 40,7 bis 57,0 (nach [15])

Klappstelle	Sollmenge	Strecke, einfach	erf. Umläufe	Dauer pro Umlauf	Gesamt- dauer
	[Mio. m³]	[km]	[-]	[min]	[d]
4 - Borkum Südstrand	1	37	346	229	55
5 - Dukegat	4	21	1.449	143	140
7 - Eingang Osterems	4	17	1.413	121	119
K2 - Dollartmund	1	9	353	78	19

Aus dieser Tabelle kann die Zahl der Umläufe am Tag ermittelt werden, mit der wiederum die durchschnittliche tägliche Betriebsdauer der Hopperbagger abgeschätzt werden kann. Es wird dabei angesetzt, dass ein Bagger beim Saugen an der Baggerstelle und Verklappen an der Klappstelle maximal ca. 30 Minuten verweilt. Beim Transport wird die Emissionszeit anhand einer mittleren Geschwindigkeit von 12 kn abgeschätzt.

Für die Hopperbagger wurden aus [6] und [8] die in folgender Tabelle 3 aufgeführten Größen- und Leistungsdaten ermittelt.

Tabelle 3. Installierte Leistungen der Maschinen (nach [6] und [8])

Schiffe	Leistung	Leistung	Leistung
	Hauptmaschine	Hilfsdiesel	Hilfskessel
	[kW]	[kW]	[kW]
Hopperbagger (5000 t)	7.350	130	880

Es wird für die Bauphase zwischen "Baggerbetrieb" und "Transportbetrieb" unterschieden, wobei der Emissionsansatz für den "Baggerbetrieb" analog auch für die "Verklappung" herangezogen wird. Je nach Betriebsphase wird zur Abschätzung der tatsächlich abgerufenen mittleren Leistung der Maschinen von unterschiedlichen Lastfaktoren ausgegangen (s. Tabelle 4). Als Ableithöhe werden 10 m angesetzt.

Tabelle 4. Angesetzte Lastfaktoren

Maschine	Lastfaktor Baggern [-]	Lastfaktor Transportieren [-]
Hauptmaschine	40%	80%
Hilfsdiesel	50%	50%
Hilfskessel	0%	0%

P:\zmn\85\85636\M85636 01 BER 11D.DOC:16.01.2012

Die Angaben in der Literatur zu leistungsspezifischen Emissionsfaktoren für Stickstoffoxide unterscheiden sich nicht wesentlich. Unterschiede ergeben sich z. B. im Zusammenhang mit Maschinentypen (Langsam-, Mittel- oder Schnellläufer) und eingesetzten Treibstoffen (MDO, MGO, RO). Im vorliegenden Fall ist nicht bekannt, welche Maschinentypen eingesetzt werden. Deswegen wird hier von einheitlichen Emissionsfaktoren für alle Maschinen ausgegangen. Für die Emissionsabschätzung der Bauphase wird auf die leistungsspezifischen Emissionsfaktoren nach [7] für das Jahr 2010 zurückgegriffen.

Tabelle 5. NO_X-Emissionsfaktoren für Hopperbagger (nach [7])

Betriebsphase	NOx-Emissionsfaktor
	[g/kWh]
Baggerbetrieb	11,1
Transportbetrieb	13,1

Mit den beschriebenen Daten und Betriebszeiten ergeben sich folgende, über das Jahr gemittelte, stündliche Emissionsraten.

Tabelle 6. Berechnete stündliche Emissionen der Hopperbagger (gemittelt über das Jahr)

Betriebsphase	NOx-Emissionen im Jahresmittel [kg/h]						
•	Klappstelle	Klappstelle	Klappstelle	Klappstelle			
	4	5	7	K2			
Baggerbetrieb							
Hauptmaschine	0,64	2,70	2,63	0,66			
Hilfsdiesel	0,01	0,06	0,06	0,01			
Transportbetrieb							
Hauptmaschine	10,13	24,08	19,01	2,51			
Hilfsdiesel	0,11	0,27	0,21	0,03			
Verklappung							
Hauptmaschine	0,64	2,70	2,63	0,66			
Hilfsdiesel	0,01	0,06	0,06	0,01			
Summe	11,56	29,86	24,60	3,89			

Es liegen keine Aussagen zur zeitlichen und räumlichen Verteilung der Schiffe vor, die eine realitätsnahe Abbildung der Schiffsbewegungen mit den jeweiligen Emissionen zuließen. Im Rechenmodell werden daher Linienquellen (Bagger- und Transportbetrieb) sowie vier Flächenquellen (Klappstellen) definiert, über die jeweils die Emissionen freigesetzt werden.

Die Emissionen aus den Schiffsmotoren werden mit einem mittleren³ Wärmestrom von etwa 0,7 MW während des Transportbetriebs und etwa 0,3 MW in den Baggerund Verklappungszeiten freigesetzt. Der Wärmestrom errechnet sich aus einem Kraftstoffverbrauch von ca. 225 g/kWh, dem daraus resultierenden Abgasvolumenstrom⁴ und einer geschätzten Abgastemperatur von 200 °C.

³ Gemittelt über die jeweils eingesetzten Maschinen.

⁴ Nach einer überschlägigen Verbrennungsrechnung gem. [9].

Die Eingabedaten der Emissionsquellen für die Ausbreitungsrechnung sind in der nachfolgenden Tabelle 7 zusammengefasst. Die Lage der Quellen im Modell kann der folgenden Abbildung 4 entnommen werden.

Die Lage der Emissionsquellen basiert dabei auf den zur Verfügung gestellten Daten und Karten zur Charakterisierung des Vorhabens und hier insbesondere auf den Angaben in der Scoping-Unterlage [15]. Aus dieser ergeben sich die Lage der Klappstellen und der Verlauf der Fahrrinnenbereiche mit Baggerarbeiten zur Vertiefung der Fahrrinne sowie die erforderlichen Transportwege.

Die Unterteilung von einzelnen Emissionsquellen (z. B. Baggerarbeiten) in Teilquellen ist modellbedingt und dient der Anpassung des Verlaufs der Emissionsquellen im Modell an den Verlauf der Emissionsquellen in der Realität (Verlauf der Fahrrinne).

Abbildung 4. Lage Emissionsquellen (lila) für die Bauphase

Tabelle 7. Eingabedaten der Emissionsquellen für die Bauphase (u. a. auf Basis von [15])

Emissionsquellen			Rechtswert	Hochwert	Höhe	Länge	Breite	Winkel	Wärme strom
Bezeichnung		ID	xq	уq	hq	aq	bq	wq	qq
Baggerarbeiten									
	Teilstrecke 1	B1	2559475	5924140	10	2000	0	320	0,34
	Teilstrecke 2	B2	2561000	5922870	10	4000	0	302	0,34
	Teilstrecke 3	B3	2563100	5919505	10	6500	0	296	0,34
	Teilstrecke 4	B4	2565940	5913675	10	2100	0	284	0,34
	Teilstrecke 5	B5	2566445	5911655	10	1000	0	312	0,34
	Teilstrecke 6	B6	2567110	5910915	10	1000	0	343	0,34
	Teilstrecke 7	B7	2568060	5910625	10	2900	0	4	0,34
	Teilstrecke 8	B8	2570944	5910824	10	3100	0	15	0,34
	Teilstrecke 9	B9	2573950	5911645	10	4800	0	3	0,34
Transport zu Klapps	stelle 4								
	Teilstrecke 1	KS4-T1	2542300	5939165	10	1000	0	289	0,67
	Teilstrecke 2	KS4-T2	2542610	5938220	10	13000	0	323	0,67
	Teilstrecke 3	KS4-T3	2553005	5930390	10	7000	0	315	0,67
	Teilstrecke 4	KS4-T4	2557960	5925440	10	4000	0	320	0,67
	Teilstrecke 5	KS4-T5	2561000	5922870	10	4000	0	302	0,67
	Teilstrecke 6	KS4-T6	2563100	5919505	10	6500	0	296	0,67
	Teilstrecke 7	KS4-T7	2565940	5913675	10	1500	0	284	0,67
Klappstelle 4		KS4	2540685	5940465	10	4370	340	321	0,34
Transport zu Klapps	stelle 5								
	Teilstrecke 1	KS5-T1	2559375	5925800	10	1700	0	276	0,67
	Teilstrecke 2	KS5-T2	2559545	5924100	10	1900	0	320	0,67
	Teilstrecke 3	KS5-T3	2561000	5922870	10	4000	0	302	0,67
	Teilstrecke 4	KS5-T4	2563100	5919505	10	6500	0	296	0,67
	Teilstrecke 5	KS5-T5	2565940	5913675	10	2100	0	284	0,67
	Teilstrecke 6	KS5-T6	2566445	5911655	10	1000	0	312	0,67
	Teilstrecke 7	KS5-T7	2567110	5910915	10	1000	0	343	0,67
	Teilstrecke 8	KS5-T8	2568060	5910625	10	2800	0	4	0,67
Klappstelle 5		KS5	2558625	5926380	10	2100	260	315	0,34
Transport zu Klapps	stelle 7								
	Teilstrecke 1	KS7-T1	2562940	5922400	10	1400	0	231	0,67
	Teilstrecke 2	KS7-T2	2562055	5921320	10	2100	0	300	0,67
	Teilstrecke 3	KS7-T3	2563100	5919505	10	6500	0	296	0,67
	Teilstrecke 4	KS7-T4	2565940	5913675	10	2100	0	284	0,67
	Teilstrecke 5	KS7-T5	2566445	5911655	10	1000	0	312	0,67
	Teilstrecke 6	KS7-T6	2567110	5910915	10	1000	0	343	0,67
	Teilstrecke 7	KS7-T7	2568060	5910625	10	2900	0	4	0,67
Klappstelle 7		KS7	2562605	5922785	10	1210	420	284	0,34
Transport zu Klapps	stelle K2								
	Teilstrecke 1	KSK2-T1	2571960	5909960	10	1600	0	150	0,67
	Teilstrecke 2	KSK2-T2	2570555	5910745	10	3500	0	15	0,67
	Teilstrecke 3	KSK2-T3	2573950	5911645	10	3900	Ö	3	0,67
Klappstelle K2		KSK2	2571370	5909765	10	1300	400	355	0,34

Auf Basis der in Tabelle 6 aufgeführten Emissionsfaktoren, der in Tabelle 7 beschriebenen Quellgeometrien sowie der beschriebenen Betriebsabläufe ergeben sich für die Emissionsquellen die in Tabelle 8 zusammengefassten Emissionsraten.

Die Emissionen der einzelnen Emissionsquellen (z. B. Baggerarbeiten) wurden dabei anteilig (entsprechend des jeweiligen Längenanteils an der Emissionsquelle) der Teilquellen) auf die Teilquellen aufgeteilt.

Tabelle 8. Berechnete Emissionsraten (g/s) der Emissionsquellen für die Bauphase

Emissionsquellen		Emissionsraten [g/s]			
Bezeichnung	ID	NO NO ₂ NO			
Baggerarbeiten			_		
00	B1	0,10236	0,01740	0,17400	
	B2	0,20471	0.03480	0,34801	
	В3	0,33266	0,05655	0,56551	
	B4	0,10747	0,01827	0,18270	
	B5	0,05118	0,00870	0,08700	
	B6	0,05118	0,00870	0,08700	
	B7	0,14842	0,02523	0,25231	
	B8	0,04309	0,00733	0,07326	
	B9	0,06672	0,01134	0,11343	
Transport zu Klapps	telle 4				
	KS4-T1	0,04523	0,00769	0,07690	
	KS4-T2	0,58802	0,09996	0,99964	
	KS4-T3	0,31663	0,05383	0,53827	
	KS4-T4	0,18093	0,03076	0,30758	
	KS4-T5	0,18093	0,03076	0,30758	
	KS4-T6	0,29401	0,04998	0,49982	
	KS4-T7	0,06785	0,01153	0,11534	
Klappstelle 4	KS4	0,10764	0,01830	0,18298	
Transport zu Klapps					
	KS5-T1	0,32203	0,05474	0,54745	
	KS5-T2	0,35991	0,06119	0,61185	
	KS5-T3	0,75771	0,12881	1,28811	
	KS5-T4	1,23128	0,20932	2,09318	
	KS5-T5	0,39780	0,06763	0,67626	
	KS5-T6	0,18943	0,03220	0,32203	
	KS5-T7	0,18943	0,03220	0,32203	
	KS5-T8	0,53040	0,09017	0,90168	
Klappstelle 5	KS5	0,45077	0,07663	0,76630	
Transport zu Klapps					
	KS7-T1	0,31403	0,05338	0,53385	
	KS7-T2	0,35097	0,05967	0,59665	
	KS7-T3	0,73889	0,12561	1,25611	
	KS7-T4	1,20069	0,20412	2,04117	
	KS7-T5	0,38792	0,06595	0,65946	
	KS7-T6	0,18472	0,03140	0,31403	
10	KS7-T7	0,18472	0,03140	0,31403	
Klappstelle 7	KS7	0,43957	0,07473	0,74726	
Transport zu Klapps		0.0=00:	0.040==	0.40===	
	KSK2-T1	0,07384	0,01255	0,12552	
	KSK2-T2	0,16152	0,02746	0,27458	
IZI	KSK2-T3	0,17998	0,03060	0,30596	
Klappstelle K2	KSK2	0,01098	0,00187	0,01867	

3.2 Betriebsphase

3.2.1 Schiffsemissionen

Die Abschätzung der Emissionen der Schiffe wurde auf der Basis von Literaturangaben zu Leistungsdaten für Hauptmaschinen (für den Antrieb), Hilfsdiesel (zur Stromversorgung) und Hilfskessel (zur Wärmeversorgung), zum spezifischen Kraftstoffverbrauch und zu verbrauchsspezifischen Emissionsfaktoren vorgenommen.

Aus der Nutzen-Kosten-Untersuchung (NKU) zur Vertiefung der Außenems [16] wurden die in Tabelle 9 genannten Rahmendaten übernommen bzw. abgeleitet.

Tabelle 9. Rahmendaten für die Schiffsbewegungen auf der Außenems (nach [16])

Schiffstyp	lst-	Prognose-	Prognose-
	Zustand	Nullfall	Ausbau
	(2006)	(2025)	(2025)
		Fahrten pro Jahr	
Stückgutschiffe	860	892	872
Massengutschiffe	70	96	82
Tankschiffe	345	458	428
Fahrzeugtransportschiffe	1.464	2.104	2.114
	Fahrten pi	ro Jahr (tideabhängige	e Schiffe ¹⁾)
Stückgutschiffe	32	40	26
Massengutschiffe	30	48	38
Tankschiffe	98	132	102
Fahrzeugtransportschiffe	261	724	734
	Wartezeiten	ı ²⁾ (tideabhängige Scl	hiffe ¹⁾) [min.]
Stückgutschiffe	31	44	14
Massengutschiffe	120	170	53
Tankschiffe	81	115	36
Fahrzeugtransportschiffe	47	66	21

¹⁾ Tideabhängige Schiffe:

Für die Stückgut-, Massengut-, Tank- und Fahrzeugtransportschiffe wurden für die einzelnen tdw-Klassen⁵ die Größen- und Leistungsdaten der Maschinenanlagen aus [6] und [8] abgeschätzt.

Anhand der Anteile der tdw-Klassen an den Gesamtbewegungen sind diese in Tabelle 10 als Mittel über alle tdw-Klassen und in Tabelle als Mittel der tideabhängigen Schiffe aufgeführt.

Tabelle 10. Über alle tdw-Klassen gemittelte installierte Leistungen der Maschinen (nach [6] und [8])

Schiffstyp	lst-	Prognose-	Prognose-
	Zustand	Nullfall	Ausbau
	(2006)	(2025)	(2025)
	mittlere L	eistung Hauptmaso	chine [kW]
Stückgutschiffe	2.490	2.560	2.430
Massengutschiffe	6.710	7.140	6.940
Tankschiffe	4.560	4.600	4.250
Fahrzeugtransportschiffe	6.310	7.420	7.440
	mittler	e Leistung Hilfsdies	sel [kW]
Stückgutschiffe	200	200	200
Massengutschiffe	330	340	330
Tankschiffe	260	260	250
Fahrzeugtransportschiffe	890	1.230	1.230
	mittlere	e Leistung Hilfskess	sel [kW]
Stückgutschiffe	300	310	290
Massengutschiffe	810	860	830
Tankschiffe	550	550	510
Fahrzeugtransportschiffe	760	890	890

⁵ tdw = Gesamt-Tragfähigkeit eines Schiffes in Tonnen

⁻ Stück- und Massengutschiffe > 25.000 tdw

⁽Annahme für Berechnung)

⁻ Tank- und Fahrzeugtransportschiffe > 15.000 tdw

²⁾ durchschnittliche Wartezeiten der ein- und ausgehenden Schiffe (für 2025 Annahme anhand der Angaben für Fahrzeugtransportschiffe)

Tabelle 11. Gemittelte installierte Leistungen der Maschinen der tideabhängigen Schiffe (nach [6] und [8])

Schiffstyp	lst-	Prognose-	Prognose-
(tideabhängige Schiffe)	Zustand	Nullfall	Ausbau
	(2006)	(2025)	(2025)
	mittlere L	eistung Hauptmaso	chine [kW]
Stückgutschiffe	8.500	8.500	8.500
Massengutschiffe	8.800	8.800	8.800
Tankschiffe	9.600	9.600	9.600
Fahrzeugtransportschiffe	11.600	11.600	11.600
	mittler	e Leistung Hilfsdies	sel [kW]
Stückgutschiffe	380	380	380
Massengutschiffe	380	380	380
Tankschiffe	440	440	440
Fahrzeugtransportschiffe	2.500	2.500	2.500
	mittler	e Leistung Hilfskess	sel [kW]
Stückgutschiffe	1.020	1.020	1.020
Massengutschiffe	1.060	1.060	1.060
Tankschiffe	1.150	1.150	1.150
Fahrzeugtransportschiffe	1.390	1.390	1.390

Es wurde zwischen "Revierfahrt" während der Fahrten auf der Ems und "Manöverbetrieb" während der tidebedingten Wartezeiten unterschieden. Je nach Betrieb wird zur Abschätzung der tatsächlich abgerufenen Leistung der Maschinen von unterschiedlichen Lastfaktoren ausgegangen (s. Tabelle 12). Als Ableithöhen werden 20 bis 30 m angesetzt.

Tabelle 12. Angesetzte Lastfaktoren

Maschine	Lastfaktor					
	Revierfahrt	Warten				
Hauptmaschine	20%	20%				
Hilfsdiesel	50%	50%				
Hilfskessel	0%	0%				

Die Angaben in der Literatur zu leistungsspezifischen Emissionsfaktoren für Stickstoffoxide unterscheiden sich nicht wesentlich. Unterschiede ergeben sich z. B. im Zusammenhang mit Maschinentypen (Langsam-, Mittel- oder Schnellläufer) und eingesetzten Treibstoffen (MDO, MGO, RO). Im vorliegenden Fall ist nicht bekannt, welche Maschinentypen eingesetzt werden. Deswegen wird hier von einheitlichen Emissionsfaktoren für alle Maschinen ausgegangen. Für die Emissionsabschätzungen der Betriebsphase wird auf die leistungsspezifischen Emissionsfaktoren nach [7] für die Jahre 2000 (Ist-Zustand 2006) und 2020 (Prognose 2025) zurückgegriffen.

Es wird zudem angenommen, dass von den Schiffen keine relevanten NH₃-Emissionen ausgehen.

Tabelle 13. NO_X-Emissionsfaktoren (nach [7])

Schiffstyp / Betriebsphase	lst-	Prognose-	Prognose-
	Zustand	Nullfall	Ausbau
	(2006)	(2025)	(2025)
	NOx-I	Emissionsfaktor [g/kWh]
Stückgutschiffe			_
Revierfahrt	16,2	13,9	13,9
Warten	13,2	11,4	11,4
Massengutschiffe			
Revierfahrt	17,7	15,3	15,3
Warten	14,0	12,1	12,1
Tankschiffe			
Revierfahrt	16,3	14,0	14,0
Warten	13,4	11,5	11,5
Fahrzeugtransportschiffe			
Revierfahrt	15,3	13,2	13,2
Warten	12,8	11,0	11,0
	spez.	Verbrauch [g Krs	t/kWh]
Stückgutschiffe	225	225	225
Massengutschiffe	225	225	225
Tankschiffe	225	225	225
Fahrzeugtransportschiffe	225	225	225

Mit den beschriebenen Daten und Betriebszeiten ergeben sich unter Zugrundelegung einer mittleren Schiffgeschwindigkeit von 10 kn folgende, über das Jahr gemittelte, stündliche Emissionsraten.

Tabelle 14. Berechnete stündliche Emissionen (gemittelt über das Jahr)

Schiffstyp / Betriebsphase							
	lst-	Prognose-	Prognose-				
	Zustand	Nullfall	Ausbau				
	(2006)	(2025)	(2025)				
Stückgutschiffe							
Revierfahrt	3,71	3,38	3,17				
Wartezeiten	0,05	0,07	0,01				
Massengutschiffe							
Revierfahrt	0,83	1,05	0,87				
Wartezeiten	0,19	0,37	0,09				
Tankschiffe							
Revierfahrt	2,61	3,00	2,60				
Wartezeiten	0,43	0,71	0,17				
Fahrzeugtransportschiffe							
Revierfahrt	17,04	25,98	26,15				
Wartezeiten	1,06	3,57	1,14				
Summe	25,92	38,12	34,20				

Es liegen keine Aussagen zur zeitlichen und räumlichen Verteilung der Schiffe vor, die eine realitätsnahe Abbildung der Schiffsbewegungen mit den jeweiligen Emissionen und ihren Ableitbedingungen zuließen. Im Rechenmodell werden daher vertikale Flächenquellen definiert, über die jeweils die Emissionen in einer Höhe zwischen 20 und 30 m gemittelt über das ganze Jahr freigesetzt werden.

Die Emissionen aus den Schiffsmotoren werden mit einem mittleren⁶ Wärmestrom von etwa 0,07 MW, gemittelt über alle Schiffstypen und tdw-Klassen, bzw. von etwa

⁶ Gemittelt über die jeweils eingesetzten Maschinen.

0,21 MW, gemittelt über alle Schiffstypen und tideabhängigen tdw-Klassen, freigesetzt. Der Wärmestrom errechnet sich aus einem Kraftstoffverbrauch von ca. 225 g/kWh, dem daraus resultierenden Abgasvolumenstrom ⁷ und einer geschätzten Abgastemperatur von 200 °C.

Die Lage der Quellen im Modell kann der folgenden Abbildung 5 entnommen werden. Die Eingabedaten der Emissionsquellen für die Ausbreitungsrechnung sind in der nachfolgenden Tabelle 15 zusammengefasst.

Die Lage der Emissionsquellen basiert dabei auf den zur Verfügung gestellten Daten und Karten zur Charakterisierung des Vorhabens und hier insbesondere auf den Angaben in der Scoping-Unterlage [15].

Die Unterteilung von einzelnen Emissionsquellen (z. B. Revierfahrt) in Teilquellen ist modellbedingt und dient der Anpassung des Verlaufs der Emissionsquellen im Modell an den Verlauf der Emissionsquellen in der Realität (Verlauf der Fahrrinne).

Abbildung 5. Lage Emissionsquellen (lila) für die Betriebsphasen

P:\zmn\85\85636\M85636 01 BER 11D.DOC:16.01.2012

⁷ Nach einer überschlägigen Verbrennungsrechnung gem. [9]

Tabelle 15. Eingabedaten der Emissionsquellen für die Betriebsphasen (u. a. auf Basis von [15])

Emissionsquelle	n		Rechtswert	Hochwert	Höhe	Länge	Vertikale Ausdeh- nung	Winkel	Wärme- strom
Bezeichnung		ID	хq	yq	hq	bq	cq	wq	qq
Revierfahrt									
	Teilstrecke 1	RF_1	2536700	5942540	20	12100	10	90	0,07
	Teilstrecke 2	RF_2	2542610	5938220	20	7400	10	54	0,07
	Teilstrecke 3	RF_3	2542610	5938220	20	13000	10	233	0,07
	Teilstrecke 4	RF_4	2553005	5930390	20	7000	10	225	0,07
	Teilstrecke 5	RF_5	2557960	5925440	20	4000	10	230	0,07
	Teilstrecke 6	RF_6	2561000	5922870	20	4000	10	212	0,07
	Teilstrecke 7	RF_7	2563100	5919505	20	6500	10	-154	0,07
	Teilstrecke 8	RF_8	2565940	5913675	20	2100	10	-166	0,07
	Teilstrecke 9	RF_9	2566445	5911655	20	1000	10	-138	0,07
	Teilstrecke 10	RF_10	2567110	5910915	20	1000	10	-107	0,07
	Teilstrecke 11	RF_11	2568060	5910625	20	2900	10	-86	0,07
	Teilstrecke 12	RF_12	2570944	5910824	20	3100	10	-75	0,07
	Teilstrecke 13	RF_13	2573950	5911645	20	4800	10	-87	0,07
tidebedingtes Wa	rten								
	Einfahrt	W_1	2542610	5938220	20	13000	10	233	0,21
	Ausfahrt	W_2	2573950	5911645	20	4800	10	-87	0,21

Auf Basis der in Tabelle 14 aufgeführten Emissionsfaktoren, der in Tabelle 15 beschriebenen Quellgeometrien sowie der beschriebenen Betriebsabläufe ergeben sich für die Emissionsquellen die in Tabelle 16 zusammengefassten Emissionsraten.

Die Emissionen der einzelnen Emissionsquellen (z. B. Baggerarbeiten) wurden dabei anteilig (entsprechend des jeweiligen Längenanteils an der Emissionsquelle) der Teilquellen) auf die Teilquellen aufgeteilt.

Tabelle 16. Berechnete Emissionsraten (g/s) der Emissionsquellen für die Betriebsphasen

Emissionsqu	ellen				Emis	sionsrater	[g/s]					
-		lst-Z	Zustand (2	006)	Progno	se-Nullfal	(2025)	Progno	Prognose-Ausbau (2025)			
	ID	D NO NO ₂ NO _X NO NO ₂		NO NO ₂ NO _X		NOx	NO	NO ₂	NO _X			
Revierfahrt												
	RF_1	0,69432	0,11803	1,18035	0,95865	0,16297	1,62970	0,94092	0,15996	1,59957		
	RF_2	0,42463	0,07219	0,72186	0,58628	0,09967	0,99667	0,57544	0,09783	0,97825		
	RF_3	0,74597	0,12681	1,26814	1,02995	0,17509	1,75091	1,01091	0,17185	1,71855		
	RF_4	0,40167	0,06828	0,68285	0,55459	0,09428	0,94280	0,54434	0,09254	0,92537		
	RF_5	0,22953	0,03902	0,39020	0,31691	0,05387	0,53874	0,31105	0,05288	0,52878		
	RF_6	0,22953	0,03902	0,39020	0,31691	0,05387	0,53874	0,31105	0,05288	0,52878		
	RF_7	0,37298	0,06341	0,63407	0,51497	0,08755	0,87546	0,50546	0,08593	0,85927		
	RF_8	0,12050	0,02049	0,20485	0,16638	0,02828	0,28284	0,16330	0,02776	0,27761		
	RF_9	0,05738	0,00975	0,09755	0,07923	0,01347	0,13469	0,07776	0,01322	0,13220		
	RF_10	0,05738	0,00975	0,09755	0,07923	0,01347	0,13469	0,07776	0,01322	0,13220		
	RF_11	0,16641	0,02829	0,28289	0,22976	0,03906	0,39059	0,22551	0,03834	0,38337		
	RF_12	0,17788	0,03024	0,30240	0,24560	0,04175	0,41753	0,24106	0,04098	0,40981		
	RF_13	0,27543	0,04682	0,46824	0,38029	0,06465	0,64649	0,37326	0,06345	0,63454		
tidebedingtes '	Warten											
	W_1	0,14100	0,02397	0,23969	0,38532	0,06550	0,65504	0,11541	0,01962	0,19620		
	W_2	0,14100	0,02397	0,23969	0,38532	0,06550	0,65504	0,11541	0,01962	0,19620		

3.2.2 Zusätzliche Unterhaltungsbaggerungen

Mit der Vertiefung der Außenems von Ems-km 40,7 bis Ems-km 74,6 gehen für den Prognose-Ausbaufall auch zusätzliche (gegenüber dem Ist-Zustand und dem Prognose-Nullfall erhöhte) Unterhaltungsbaggerungen einher.

Im Wesentlichen sind die zusätzlichen Unterhaltungsbaggerungen und die damit verbundenen Emissionen im Bereich der Ems-km 40,7 bis Ems-km 57,0 erforderlich.

Im Bereich der für den im folgenden heranzuziehenden Betrachtungsbereich (s. Kapitel 2.3.3) relevanten Ems-km 57,0 bis Ems-km 113,0 sind zusätzliche Unterhaltungsbaggerungen gemäß [15] (Tabelle 6.1) nur in geringen Umfang (Erhöhung um ca. 17 % der derzeit erforderlichen Unterhaltungsbaggerungen für diesen Bereich) erforderlich. Aus den zusätzlichen Unterhaltungsmengen von ca. 0,22 Mio. m³/a ergibt sich, in Anlehnung an die Emissionsansätze gemäß den Ausführungen in Kapitel 3.1, für diesen Bereich eine mittlere jährliche Emission von < 0,9 kg/h ⁸ aus Baggerbetrieb, Transportbetrieb und Verklappung.

Die zusätzlichen Unterhaltungsbaggerungen stellen gegenüber den betrachteten Emissionen aus dem Stückgut-, Massengut- und Tank- und Fahrzeugtransportschiffsverkehr im Jahresmittel somit keine maßgeblichen Emissionen dar (< 3 % der Schiffsemissionen des Prognose-Ausbaufalls gemäß Tabelle 14) und sind daher im Rahmen dieser Untersuchung als vernachlässigbar einzustufen.

Diese Einstufung wird auf Basis der Ergebnisse der Ausbreitungsrechnungen für die Bauphase gestützt. Diese zeigen, dass die im Rahmen der Bauphase berücksichtigten Emissionen keinen relevanten Einfluss auf die Immissionssituation im Betrachtungsbereich haben (s. Kapitel 7.2.3 und 7.3.3). Maßgeblich für die ausgewiesenen Immissions-Zusatzbelastung im Betrachtungsbereich sind für die Bauphase die berücksichtigten Emissionen für die Ems-km 70,0 bis Ems-km 113,0. Für die Bauphase sind dies gemäß Tabelle 8 ca. 6,4 kg/h im Jahresmittel ⁹ und somit ca. das 7fache der mittleren jährlichen Emissionen der zusätzlichen Unterhaltungsbaggerungen für die Ems-km 57,0 bis Ems-km 113,0 von ca. < 0,9 kg/h. Aus den zusätzlichen Unterhaltungsbaggerungen für die Ems-km 57,0 bis Ems-km 113,0 sind somit keine relevanten Immissionsbeträge zu erwarten.

Unter Ansatz einer zusätzlich erforderlichen Unterhaltungsmenge von 0,22 Mio. m³/a, einer einfachen Strecke von im Mittel ca. 10 km sowie ca. 76 zusätzlich erforderlichen Umläufen (Angaben in Anlehnung an Tabelle 2)

⁹ NO_x-Emissionen der Emissionsquellen KS4-T1, KS4-T2, KS4-T3 und KS4 gemäß Tabelle 8

P:\zmn\85\85636\M85636 01 BER 11D.DOC:16.01.2012

4 Emissionen anderer Vorhaben

4.1 Allgemeines

Für den Prognose-Ausbaufall sollen ergänzend die Immissionsbeiträge der Vorhaben

- Verbesserung der Fahrrinne Eemshaven-Nordzee,
- Multi fuel-Kraftwerk in Eemshaven (NUON Power Generation BV) (im Folgenden bezeichnet als "NUON-Kraftwerk"),
- 1.200 MW Kraftwerk in Eemshaven (Eemsmond Energie BV) (im Folgenden bezeichnet als "Eemsmond-Kraftwerk"),
- 1.600 MW Kohlekraftwerk in Eemshaven (RWE Power AG) (im Folgenden bezeichnet als "RWE-Kraftwerk") sowie
- LNG Terminal / ELT in Eemshaven (Gasunie, VOPAK, Essent) (im Folgenden bezeichnet als "LNG-Terminal")

berücksichtigt werden, da diese in den zugrunde gelegten Vorbelastungsdaten im Hinblick auf Ihre Emissionsbeiträge nicht enthalten sind.

Die Modellierung dieser im *Prognose-Ausbaufall* ergänzend zu betrachtenden Emissionsquellen erfolgt entsprechend den Angaben der Provincie Groningen [20] zu den Emissionsparametern. Diese Angaben enthalten zudem Emissionsdaten zu weiteren Vorhaben (insbesondere Eemsmond-Betoncentrale BV ("Eemsmond-Beton"), VOPAK Ölterminal ("VOPAK"), Wijnne & Barends Logistics ("Wijnne & Barends" und Theo Pouw BV ("Pouw"))

Im Folgenden sind die berücksichtigten Eingangsdaten für die Ausbreitungsrechnung kurz skizziert.

4.2 Verbesserung der Fahrrinne Eemshaven-Nordzee

Die aus der Verbesserung der Fahrrinne Eemshaven-Nordzee resultierenden Stickstoffoxid-Emissionen werden gemäß den Ausführungen in [20] berücksichtigt. Die Emissionsansätze hieraus sind in Tabelle 19 im Anhang dieses Berichtes zusammengefasst sowie in folgender Abbildung 6 hinsichtlich ihrer Lage dargestellt.

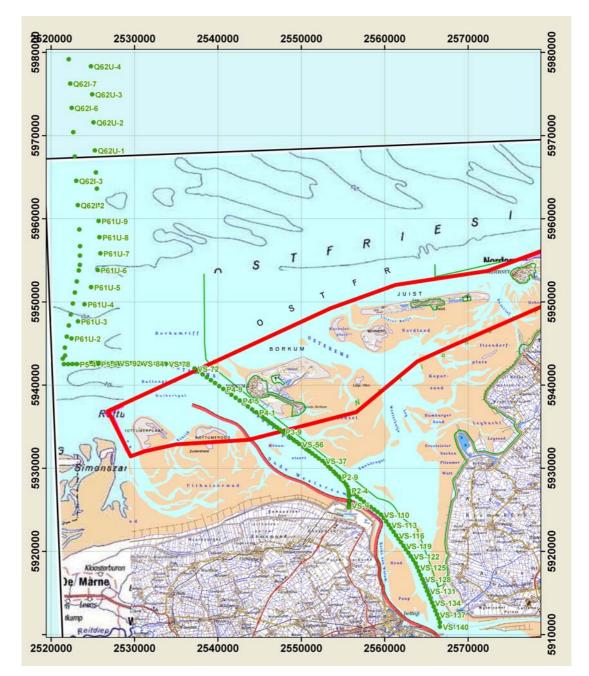


Abbildung 6. Lage der Emissionsquellen (grün) Fahrrinne Eemshaven-Nordzee [19]

P:\zmn\85\85636\M85636_01_BER_11D.DOC:16. 01. 2012

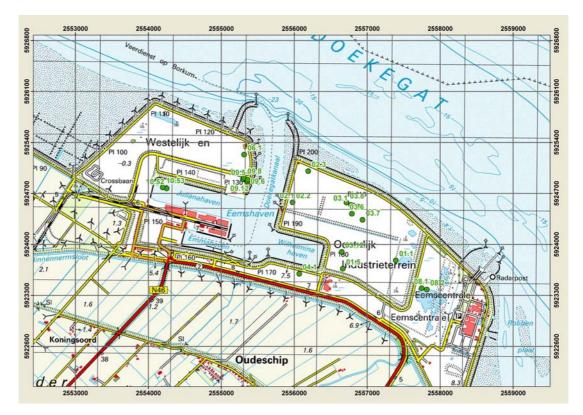
4.3 Anlagenemissionen Eemshaven

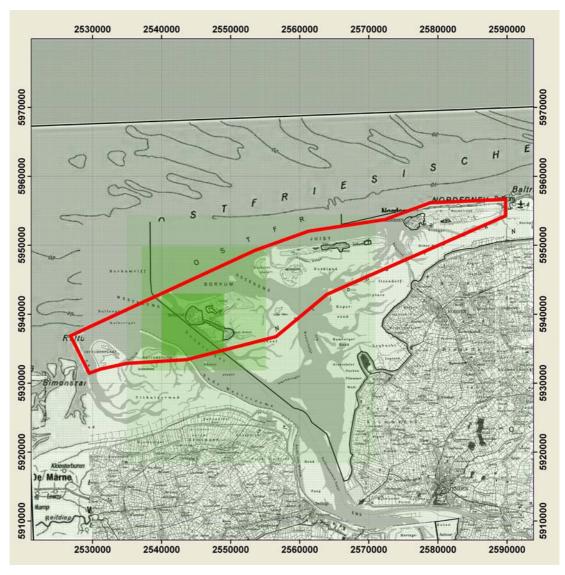
Die aus den Vorhaben in Emshaven (NUON-Kraftwerk, Eemsmond-Kraftwerk, RWE-Kraftwerk, LNG-Terminal, Eemsmond-Beton, VOPAK, Wijnne & Barends und Pouw) resultierenden Stickstoffoxid-Emissionen werden gemäß den Ausführungen in [20] berücksichtigt. Die Emissionsansätze hieraus sind in Tabelle 17 zusammengefasst.

Tabelle 17. Stickstoffoxid- und Ammoniakemissionsquellen in Eemshaven mit Emissionsrandbedingungen (nach [20])

Quellen	Koordi (Gauss-I		Fläch	nenque	llen	Ablei dingu			Emis	sionspara	ameter		Emi	ssion	en
Nr Beschreibung	Rechtswert [m]	Hochwert [m]	Länge [m]	Breite [m]	Winkel [º]	Schornsteinhöhe [m]	Innendurchmesser [m]	Abgasgeschindigkeit [m/s]	Abgastemperatur [°C]	Abgasvolumen [m³/s]	Wärmestrom [MW]	Betriebsstunden [h/a]	NO _x [kg/s]	NO ₂ [%]	NH ₃ [kg/s]
01.1 RWE-Kraftwerk - Einheit 1-2	2557392	5923782	-	-	-	120	14,0	9,86	47	1295,00	58,100	8760	0,065300	5	0,006530
01.5 RWE-Kraftwerk - Kohlenschiff	2556665	5923666	-			10	1,0	1,32	10	1,00	0,490	8760	0,002300	5	
02.1 LNG-Terminal - Terminal Schiff 02.2 LNG-Terminal - Schiff	2555978 2555978	5924578 5924578	-	-	-	10 10	1,0	31,80	10 10	1,00 1,00	0.490	8760 8760	0,000728 0.000120	5	
02.3 LNG-Terminal - SCV	2556191	5925007				15	1,0 1,0	1,30 1,30	10	1,00	0,490	8760	0,004670	5 5	
03.1 NUON-Kraftwerk - Kamin 1	2556778	5924544				85	5,5	13.46	112	226,70	70,000	8760	0,019800	5	0.000966
03.2 NUON-Kraftwerk - Kamin 2	2556822	5924532	_	_	_	85	5,5	9,89	10	226,70	70,000	8760	0,019800	5	0,000966
03.3 NUON-Kraftwerk - Kamin 3	2556870	5924521	_	_	_	85	5,5	9,89	10	226,70	70.000	8760	0.019800	5	0,000966
03.6 NUON-Kraftwerk - Restgasverbrennung	2556790	5924422	_	_	_	85	0,9	6,30	280	2,00	0,680	8760	0,000446	5	0,000000
03.7 NUON-Kraftwerk - Kohlenaufbereitung	2556936	5924338	-	-	-	85	1,9	18,26	110	36,90	4.640	8760	0.003400	5	
03.8 NUON-Kraftwerk - Fackel	2556716	5924574	-	_	-	85	1.2	25.90	527	10,00	38,240	174	0.011000	5	
03.12 NUON-Kraftwerk - Kohlenschiff	2556652	5923898	-	-	-	10	1,0	1,32	10	1,00	0,490	8760	0,002300	5	
04.1 Pouw - GTS	2556069	5923598	-	-	-	45	1,2	0,92	10	1,00	1,900	8760	0,001250	5	
06.1 Wijnne & Barends (Schip voor de kader)	2555313	5925234	-	-	-	10	1,6	0,52	10	1,00	0,490	8760	0,000600	5	
08.1 Eemsmond-Kraftwerk - Variante Hv2 65m - 1	2557747	5923400	-	-	-	65	7,3	21,87	93	682,81	78,208	8760	0,012397	10	0,000165
08.2 Eemsmond-Kraftwerk - Variante Hv2 65m - 2	2557818	5923381	-	-	-	65	7,3	21,87	93	682,81	78,208	8760	0,012397	10	0,000165
09.5 Eemsmond Beton (Betonmischer füllen)	2555297	5924895	-	-	-	2	0,1	2,50	100	0,10	0,003	850	0,000147	7	
09.6 Eemsmond Beton (Betonmischer spülen)	2555355	5924862	-	-	-	2	0,1	2,50	100	0,10	0,003	750	0,000108	7	
09.7 Eemsmond Beton (Betonmischer fahren)	2555323	5924878	50	25	167	-	-	-	10	-	-	500	0,000111	7	
09.8 Eemsmond Beton (Betonsilo füllen)	2555311	5924914	-	-	-	2	0,1	2,50	100	0,10	0,003	686	0,000368	7	
09.9 Eemsmond Beton (Kippwagen löschen)	2555346	5924923	30	25	167	-	-	-	10	-	-	125	0,000368	7	
09.10 Eemsmond Beton (Lkw fahren)	2555340	5924909	50	20	167	-	-	-	10	-	-	600	0,000278	7	
09.11 Eemsmond Beton (Wiellader)	2555348	5924900	30	25	167	-	-	-	10	-	-	2000	0,000167	7	
09.12 Eemsmond Beton (Gabelstapler)	2555362	5924887	-	-	-	1	0,1	0,00	10	0,01	-	250	0,000067	7	
10.52 VOPAK - Heber	2554251	5924770	-	-	-	10	0,5	10,00	512	2,00	0,443	8760	0,000019	5	
10.53 VOPAK - Seeschiff	2554197	5924783	-	-	-	15	1,0	10,00	512	7,90	1,771	8760	0,000350	5	

Die Lage der Emittenten kann der folgenden Abbildung entnommen werden.




Abbildung 7. Lage der Emissionsquellen (grün) Eemshaven

5 Weitere Eingangsgrößen

5.1 Rechengebiet und räumliche Auflösung

Als Rechengebiet wurde ein Rechteck mit Kantenlängen von 72 x 72 km festgelegt (linke untere Ecke Rechtswert: 25 21 280, Hochwert: 59 07 600). Das Rechengebiet beinhaltet den Betrachtungsbereich (s. Abbildung 3) sowie alle in den unterschiedlichen Szenarien betrachteten Emissionsquellen (s. Tabellen 7, 15, 17 und Tabelle 19 im Anhang).

Es wurde ein 4-fach geschachteltes Rechengitter mit Gitterweiten von 30 m bis 240 m verwendet. Die Höhe der Zusatzbelastungen im Betrachtungsbereich kann bei diesem Ansatz mit hinreichender Genauigkeit bestimmt werden.

Abbildung 8. Verwendetes Rechengebiet/-gitter der Ausbreitungsrechnung (grün) (Betrachtungsbereich = rot umrandet)

P:\zmn\85\85636\M85636 01 BER 11D.DOC:16. 01. 2012

Die Konzentration an den Aufpunkten wurde als Mittelwert über ein vertikales Intervall vom Erdboden bis 3 m Höhe über dem Erdboden berechnet, sie ist damit repräsentativ für eine Aufpunkthöhe von 1,5 m über Flur. Die so für ein Volumen bzw. eine Fläche des Rechengitters berechneten Mittelwerte gelten als Punktwerte für die darin enthaltenen Aufpunkte.

5.2 Rauigkeitslänge

Die Bodenrauigkeit des Geländes wird durch eine mittlere Rauigkeitslänge z_0 beschrieben. Sie ist nach Tabelle 14 in Anhang 3 der TA Luft aus den Landnutzungsklassen des CORINE-Katasters zu bestimmen. Die Rauigkeitslänge wurde gemäß TA Luft für ein kreisförmiges Gebiet um den Schornstein des Emittenten festgelegt, dessen Radius das 10-fache der Bauhöhe der Schornsteine beträgt. Die auf der Basis von Geländenutzungsdaten errechnete und auf den nächstgelegenen Tabellenwert gerundete mittlere Bodenrauigkeit ergibt sich zu z_0 = 0,05 m. Eine wesentliche Änderung in der Landnutzung gegenüber dem Zeitpunkt der Erhebung des Katasters konnte durch einen Abgleich mit Luftbildern nicht festgestellt werden.

Die verwendete Rauigkeitslänge von $z_0 = 0,05$ m stellt hier im wesentlichen ein Mittel zwischen der Rauigkeitslänge für Meere und Ozeane von $z_0 = 0,10$ m und der Rauigkeitslänge für Salzwiesen, in der Gezeitenzone liegende Flächen, ... von $z_0 = 0,02$ m dar. Eine sehr starke Variation der Rauigkeitslänge liegt im Rechengebiet nicht vor.

Die Verdrängungshöhe ¹⁰ d_0 ergibt sich nach Nr. 8.6 in Anhang 3 der TA Luft im vorliegenden Fall aus z_0 zu $d_0 = z_0 \times 6$.

5.3 Berücksichtigung der statistischen Unsicherheit

Durch Wahl einer ausreichenden Partikelzahl (Qualitätsstufe 4, entspricht einer Teilchenrate = 32 s⁻¹) bei der Ausbreitungsrechnung wurde darauf geachtet, dass die modellbedingte statistische Unsicherheit des Berechnungsverfahrens, berechnet als statistische Streuung des berechneten Wertes, beim Immissions-Jahreswert weniger als 3 vom Hundert des Immissions-Jahreswertes betragen hat.

5.4 Meteorologische Daten

Gemäß den Anforderungen des Anhangs 3 TA Luft sind für Ausbreitungsrechnungen meteorologische Daten zu verwenden, die für das Beurteilungsgebiet charakteristisch sind. Im vorliegenden Fall wurden zur Berücksichtigung der meteorologischen Situation die Messdaten der innerhalb des Beurteilungsgebiets liegenden Station Borkum in Form einer meteorologischen Zeitreihe AKTerm herangezogen.

Die Daten wurden vom Deutschen Wetterdienst (DWD) in Form einer einjährigen Zeitreihe in stündlicher Auflösung für Jahr 2001 zur Verfügung gestellt [12]. Diese Daten sind nach Auskunft des DWD zeitlich repräsentativ für die Station Borkum [11].

¹⁰ Die Verdrängungshöhe d_0 gibt an, wie weit die theoretischen meteorologischen Profile auf Grund von Bewuchs oder Bebauung in der Vertikalen zu verschieben sind. Sie ist als das 6fache der Rauhigkeitslänge z_0 anzusetzen (TA Luft 2002).

Die Windgeberhöhe der Station beträgt 10 m über Grund. Der Standort der Windmessung hat die folgende Position im Gauss-Krüger-Koordinatensystem:

Rechtswert: 25 49 505, Hochwert: 59 36 895.

Für die Berechnung der nassen Deposition hinsichtlich des Stickstoffeintrages wurde eine Niederschlagszeitreihe des o.g. Jahres der DWD-Niederschlagsmessstation in Norderney berücksichtigt [13].

Die Häufigkeitsverteilung von Windrichtung und -geschwindigkeit der Station aus dem Jahr 2001 zeigt Abbildung 9. Es liegt eine relativ gleichmäßige Windrichtungsverteilung mit einem Schwerpunkt aus westlichen Windrichtungen vor.

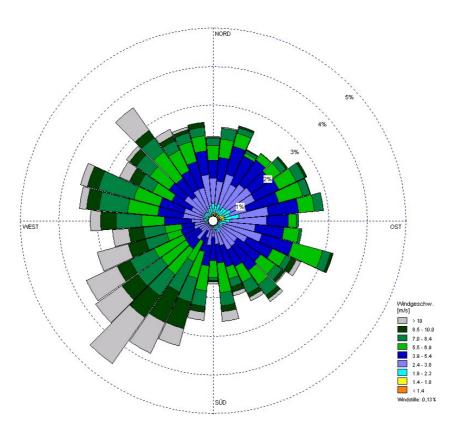


Abbildung 9. Windrichtungshäufigkeitsverteilung; Borkum, 2001 [12]

In Abbildung 10 sind die Häufigkeiten der Windgeschwindigkeitsklassen und Ausbreitungsklassen nach TA Luft dargestellt. Windschwache Lagen mit Windgeschwindigkeiten <1,4 m/s kommen am Standort in etwa 3 % der Jahresstunden vor. Mit etwa 77 % Anteil an der Häufigkeit aller Ausbreitungsklassen sind die indifferenten Ausbreitungssituationen der Klassen III/1 und III/2 am häufigsten.

Stabile Ausbreitungssituationen der Klassen I und II, zu denen unter anderem auch die Inversionswetterlagen zu rechnen sind, treten an etwa 14 % der Jahresstunden auf sowie die labilen Klassen IV und V an etwa 7 % der Jahresstunden.

Die mittlere Windgeschwindigkeit beträgt 5,66 m/s.

Abbildung 10. Häufigkeitsverteilung der Windgeschwindigkeitsklassen und der Ausbreitungsklassen; Borkum 2001 [12]

Die vom Partikelmodell benötigten meteorologischen Grenzschichtprofile und die hierzu benötigten Größen

- Windrichtung in Anemometerhöhe,
- Monin-Obukhov-Länge,
- Mischungsschichthöhe,
- Rauigkeitslänge sowie
- Verdrängungshöhe

wurden gemäß Richtlinie VDI 3783 Blatt 8 und entsprechend den in Anhang 3 der TA Luft festgelegten Konventionen bestimmt.

5.5 Berücksichtigung von Bebauung und Gelände

5.5.1 Bebauung

Bei der Berücksichtigung der Bebauung im Rahmen der Ausbreitungsrechnung ist der Wirkungsbereich potenzieller Strömungshindernisse im Verhältnis zur Schornsteinbauhöhe zu berücksichtigen. Gemäß TA Luft (Anhang 3, Nr. 10) sind bei dieser Prüfung alle Gebäude, deren Abstand von der jeweiligen Emissionsquelle geringer ist als das 6-fache ihrer Höhe, in die weitere Prüfung mit einzubeziehen.

Auf Basis der Abstände der berücksichtigten Emissionsquellen des Schiffverkehrs von der Wohnbebauung sowie der Abstände der Emissionsquellen der anderen Vor-

haben zum Betrachtungsbereich wurden im Rahmen der durchgeführten Ausbreitungsrechnungen keine Gebäudestrukturen einbezogen. Die Berücksichtigung erfolgt somit über die Rauigkeitslänge.

5.5.2 Gelände

Neben der Bebauung müssen gemäß TA Luft, Anhang 3, Nr. 10 zusätzlich Geländeunebenheiten berücksichtigt werden, wenn die resultierenden Steigungen den Wert von 0,05 überschreiten und im Rechengebiet Höhendifferenzen von mehr als der 0,7fachen Schornsteinhöhe vorliegen. Dies ist im vorliegenden Rechengebiet nicht der Fall.

Eine weitere Berücksichtigung der Orographie (Höhenstrukturen der Erdoberfläche im Betrachtungsbereich) im Rahmen der Ausbreitungsrechnung erfolgt daher nicht.

5.6 Verwendetes Ausbreitungsmodell

Neben der Ermittlung der Immissionszusatzbelastung für Stickstoffoxide wurde der Stickstoffeintrag bedingt durch die nassen und trockenen Deposition von NO und NO₂ sowie NH₃ innerhalb des Betrachtungsbereiches ermittelt. Hierzu wurde das Lagrangeschen Partikelmodell LASAT [2] verwendet. Dieses Modell entspricht den Anforderungen der TA Luft (Anhang 3) sowie der VDI Richtlinie 3945 Bl. 3 [5].

5.7 Hinweise zur Ermittlung der Stickstoffkonzentration in der Luft

Bei der Berechnung der NO₂-Zusatzbelastung ist die chemische Umsetzung von Stickstoffmonoxid (NO) zu Stickstoffdioxid (NO₂) zu berücksichtigen. Hierzu ist der Emissionsmassenstrom von NO und NO₂ anzugeben.

Bei Verbrennungsprozessen in Verbrennungsmotoranlagen und Kesseln bestehen die Stickstoffoxidemissionen $NO_{X.}$ zum Größtenteils als Stickstoffmonoxid NO. Erfahrungsgemäß liegen die Werte bei Benzin- und Dieselmotoren sowie Kesseln bei ca. 90 % NO und ca. 10 % Stickstoffdioxid NO_2 .

Bei den Stickstoffoxidemissionen der *anderen Vorhaben* werden die NO₂-Anteile der von der Provincie Groningen zur Verfügung gestellten Emissionsdaten verwendet.

Der Stoff NO_X (Summe aus NO und NO_2) wird bei der Durchführung der nachfolgenden Ausbreitungsrechnung zusätzlich unabhängig von den Stoffen NO und NO_2 behandelt.

5.8 Hinweise zur Ermittlung der Stickstoffdeposition

Die Deposition von Schadstoffen wird unter Ansatz von Depositionsgeschwindigkeiten nach der Richtlinie VDI 3782 Blatt 5 [3] berechnet. Die Luftschadstoffe werden aus der Atmosphäre über nasse Deposition (Regen, Schnee usw.) und trockene Deposition in Ökosysteme am Boden eingetragen. Der Eintrag wird von den Turbulenzeigenschaften der oberflächennahen Luftschicht bestimmt, die von der lokalen Oberflächenbeschaffenheit, charakterisiert durch Landnutzungsklassen, abhängig sind. Die trockene Deposition ist für die hier betrachteten Stickstoffoxide (NO und

MÜLLER-BBM

NO₂) größer als die nasse Deposition [3]. Für die Abschätzung der Zusatzbelastung im Nahbereich einer Quelle und bei bodennaher Freisetzung der Schadstoffe spielt die nasse Deposition von gasförmigen Luftbeimengungen und Feinstaub meist nur eine untergeordnete Rolle [10], lediglich für die nasse Deposition von Ammoniak wurde ein relevanter Zuschlag ermittelt.

Bei der Ausbreitungsrechnung werden für die Schadstoffe, hier Stickoxide (NO und NO₂) und Ammoniak (NH₃), stoff- und flächenspezifisch unterschiedliche Depositionsgeschwindigkeiten angesetzt. Die Depositionsgeschwindigkeiten über Wiesen und Ackerböden sind kleiner als über Laubwäldern. Die in [3] empfohlenen Depositionsgeschwindigkeiten für NO von 0,05 cm/s, für NO₂ von 0,3 cm/s und für NH₃ von 1,2 cm/s als großräumiges Mittel (Mesoskala) sowie die Auswaschraten (nasse Deposition) nach [3] werden bei den Ausbreitungsrechnungen angesetzt.

Die Berechnung der Schadstoffdepositionen erfolgt flächenhaft im Untersuchungsgebiet mit dem Modell LASAT. Die berechneten NO-, NO₂- und NH₃-Depositionen werden entsprechend der Molekularmassen in Stickstoffdepositionen umgerechnet.

6 Immissions-Vorbelastung

6.1 Stickstoffoxidkonzentration in der Luft

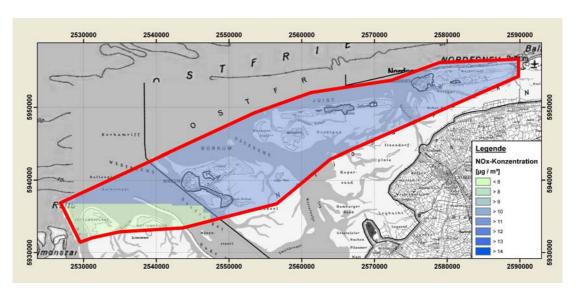
Die Vorbelastungssituation bzgl. der Stickstoff-Konzentration wird für den deutschen Teil des Betrachtungsbereichs im Wesentlichen anhand der Ergebnisse der Messungen, die im Rahmen des lufthygienischen Überwachungssystems Niedersachsen (LÜN) routinemäßig durchgeführt werden [21] [22], sowie des Interaktiven Kartendienstes des Umweltbundesamtes [23] beschrieben.

In Abbildung 11 ist die Immissionssituation im Betrachtungsbereich für das Jahr 2009 dargestellt. Tabelle 18 zeigt die Ergebnisse der Immissionsmessungen an den Stationen Ostfriesische Inseln (Standort: Norderney, Am Wasserwerk II) und Ostfriesland (Standort: Emden, Am Eisenbahndock) des LÜN für die Jahre 2005 bis 2009.

Aus Tabelle 18 wird ersichtlich, das die Immissionskonzentrationen des Jahres 2009 die mittlere Immissionssituation der Jahre 2005-2009 gut wiederspiegelt.

Abbildung 11. NO₂-Immissionskonzentration (Jahresmittelwert) 2009 in μg/m³ (aus [23])

Tabelle 18. NO₂- und NO_X-Immissionskonzentrationen (Jahresmittelwerte) der Jahre 2005 – 2009 an den Stationen Ostfriesische Inseln und Ostfriesland in μg/m³ [21] [22]


Jahr	Ostfriesis	che Inseln	Ostfriesland			
	NO ₂	NO_X	NO_2	NO_X		
2005	11	13	18	23		
2006	10	13	16	21		
2007	9	12	15	20		
2008	10	11	16	22		
2009	10	11	16	22		
Mittel	10	12	16	22		

Für den niederländischen Teil des Betrachtungsbereichs werden die Vorbelastungsdaten des Planbureau voor de Leefomgeving für das Jahr 2009 herangezogen [25].

Bei beiden Datenbeständen handelt es sich um Angaben zur Stickstoffdioxid-Konzentration. Im Hinblick auf den Schutz vor erheblichen Nachteilen, insbesondere Schutz der Vegetation und von Ökosystemen ist jedoch die Vorbelastung hinsichtlich der Stickstoffoxid-Konzentration von Interesse.

Auf Basis des messtechnisch dokumentierten Verhältnisses zwischen der NO_2 - und der NO_X -Immissionskonzentration im Bereich der ostfriesischen Inseln (s. Tabelle 18) kann für den Betrachtungsbereich davon ausgegangen werden, dass die NO_2 -Immissionskonzentration ca. 83 % der NO_X -Immissionskonzentration ausmacht. Unter Ansatz dieses Faktors wird aus den Vorbelastungsdaten zur NO_2 -Immissionskonzentration eine entsprechende Vorbelastung bzgl. der NO_X -Immissionskonzentration generiert.

Die sich aus der Analyse ergebenden Vorbelastungsdaten sind für den Betrachtungsbereich in Abbildung 12 dargestellt. Im Übergangsbereich von den niederländischen zu den deutschen Vorbelastungsdaten tritt ein deutlicher Sprung der Immissions-Konzentrationen auf, welcher ursächlich durch die verschiedenen Datenquellen bedingt ist. Eine Glättung des Übergangsbereiches wird nicht vorgenommen, da keine detaillierten Daten für diesen Übergangsbereich vorliegen.

Abbildung 12. NO_χ-Immissions-Jahres-Vorbelastung in μg/m³ im Betrachtungsbereich

6.2 Stickstoffdeposition

Die Analyse und Bereitstellung der Depositions-Vorbelastung im Betrachtungsbereich der Immissionsprognose wird anhand der vom Umweltbundesamt zur Verfügung gestellten Vorbelastungsdaten für 9 verschiedene Landnutzungsklassen des Jahres 2007 beschrieben [24].

Die Zuordnung der Depositionsdaten zu den jeweiligen Landnutzungsklassen erfolgte dabei anhand der vom Auftraggeber zur Verfügung gestellt Ergebnisse der Biotopanalysen im Betrachtungsbereich [17].

Für den niederländischen Teil des Betrachtungsbereichs werden Depositions-Vorbelastungsdaten des Planbureau voor de Leefomgeving, für das Jahr 2009, herangezogen [25].

Für einzelne Randbereiche des Betrachtungsbereichs enthalten die zu Grunde gelegten Datenquellen keine Vorbelastungsdaten.

Die sich aus der Analyse ergebenden Vorbelastungsdaten sind für den Betrachtungsbereich in Abbildung 13 dargestellt. Im Übergangsbereich von den niederländischen zu den deutschen Vorbelastungsdaten tritt ein deutlicher Sprung der Depositionsdaten auf, welcher durch die verschiedenen Datenquellen bedingt ist. Eine Glättung des Übergangsbereiches erfolgt nicht, da keine detaillierten Daten für diesen Übergangsbereich vorliegen.

Die Vorbelastung der N-Deposition ist sehr viel kleinräumiger strukturiert als die der NO_X -Konzentration. Dies ist darin begründet, das die Höhe der N-Deposition wesentlich von der Art der Vegetation und der damit verbundenen Geländerauigkeit abhängt. Im Betrachtungsbereich liegt die N-Deposition je nach Vegetationsstruktur und Datengrundlage zwischen 10.000 und 18.000 g/(ha \times a).

Für den Bereich der Insel Borkum können die N-Depositions-Vorbelastungsdaten der Abbildung 14 entnommen werden.

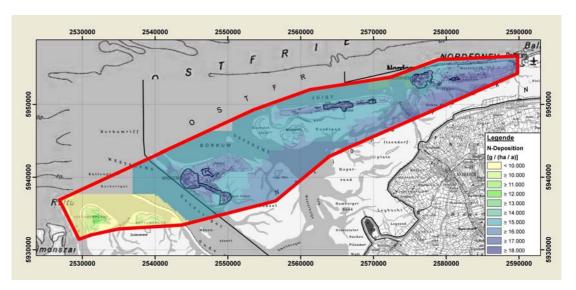


Abbildung 13. N-Depositions-Vorbelastung in g/(ha × a) im Betrachtungsbereich

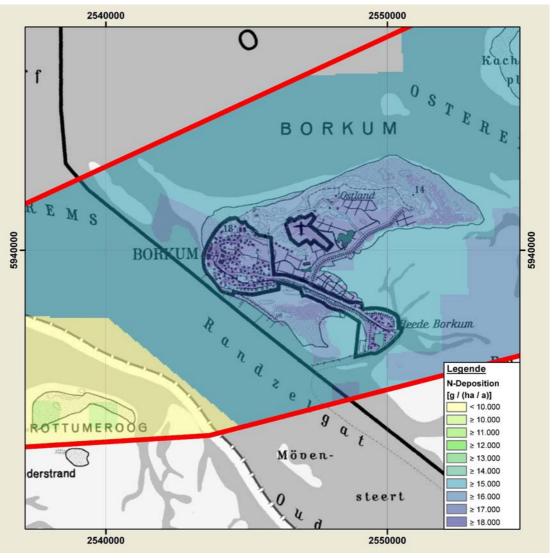


Abbildung 14. N-Depositions-Vorbelastung in g/(ha × a) im Bereich Borkum

P:\zmn\85\85636\M85636 01 BER 11D.DOC:16.01.2012

7 Immissions-Zusatz- und Gesamtbelastung

7.1 Allgemeines

Die räumliche Verteilung der prognostizierten Immissions-Jahres-Zusatzbelastungen (IJZ) ¹¹ folgt weitestgehend der Windrichtungshäufigkeitsverteilung in Verbindung mit der Geometrie der berücksichtigten Emissionsquellen. Dies gilt qualitativ sowohl für die Stickstoffoxid-Konzentration als auch für die Stickstoff-Deposition.

Die höchsten prognostizierten Zusatzbelastungen treten im Nahbereich der Emissionsquellen der berücksichtigten Schiffsbewegungen auf.

Die prognostizierten Immissions-Zusatzbelastungen aus den berücksichtigten anderen Vorhaben in Eemshaven weisen auf Grund der deutlich größeren Ableithöhen (bis 120 m über Grund) im Gegensatz dazu eine großräumigere Verteilung auf.

Im Folgenden sind für die Szenarien

- Ist-Zustand
- Prognose-Nullfall,
- Bauphase
- Prognose-Ausbaufall sowie
- Prognose-Ausbaufall inkl. anderer Vorhaben

die sich aus den Emissions- und Rechenansätzen ergebenden räumlichen Verteilungen der Immissions-Jahres-Zusatzbelastungen sowie die, unter zusätzlicher Berücksichtigung der Vorbelastungsdaten nach Kapitel 6 ermittelten, Immissions-Jahres-Gesamtbelastungen für die Stickstoffoxid-Konzentration und die Stickstoff-Deposition im gesamten Betrachtungsbereich und im Nahbereich der Insel Borkum dargestellt.

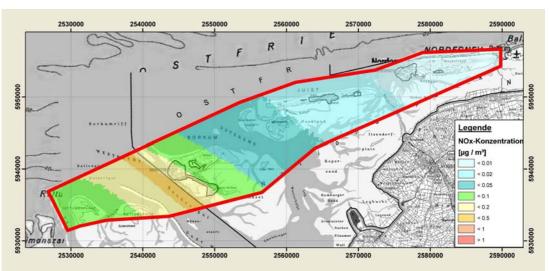
Im Szenario Ist-Zustand entspricht die Immissions-Gesamtbelastungen der Immissions-Vorbelastung gemäß Kapitel 6. Die Immissions-Jahres-Zusatzbelastung für dieses Szenario, welche die Immissionsbeiträge des bestehenden Stückgut-, Massengut-, Tank- und Fahrzeugtransportschiffsverkehrs auf der Außenems (Emskm 40,7 bis Ems-km 113) (Datenstand 2006, vgl. Kap. 3.2.1) berücksichtigt, wird dargestellt, um bei den weiteren betrachteten Szenarien Aussagen zum Vorhabensanteil der erwarteten neuen Gesamtbelastung machen zu können.

Alle in den Folgenden Kapiteln 7.2 und 7.3 aufgeführten Immissionskonzentrationsund Depositionswerte stellen Jahresmittelwerte dar.

Es erfolgt ergänzend eine GIS-kompatible Bereitstellung der Daten an den Auftraggeber, so dass im Rahmen weiterer Untersuchungen (z. B. UVU, FFH-VU) einzelne Bereiche detaillierter betrachtet/dargestellt werden können.

Immissions-Jahres-Zusatzbelastung (IJZ) = Immissionsbeitrag im Jahresmittel der in diesem Bericht für die einzelnen betrachteten Szenarien berücksichtigten Emittenten und deren Emissionen gemäß Kapitel 3.

7.2 Stickstoffoxidkonzentration in der Luft


7.2.1 Ist-Zustand

Während die Immissions-Gesamtbelastung des Ist-Zustandes (derzeitige Immissions-Vorbelastung) als Ermittlungsgrundlage für die zukünftig zu erwartende Immissionsbelastung im Betrachtungsbereich herangezogen wird, dient die Angabe der Immissions-Zusatzbelastung_{Ist-Zustand} zur Anteilsermittlung erwarteter Immissionsveränderungen im Betrachtungsbereich durch das geplante Vorhaben (hier: Außenems-Vertiefung).

Zur Ermittlung der Immissions-Zusatzbelastung_{Ist-Zustand} werden wie vorangehend dargestellt die Emissionen des Schiffsverkehrs (Stückgut-, Massengut-, Tank- und Fahrzeugtransportschiffe) in der Außenems des Jahres 2006 (s. Kapitel 3.2) herangezogen.

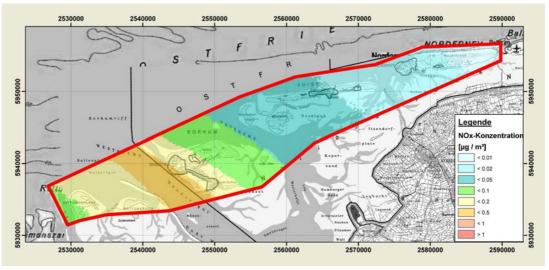
Die Immissions-Zusatzbelastung_{Ist-Zustand} wird in den folgenden Abbildungen 15 und 16 dargestellt. Diese beträgt im Westen der Insel Borkum max. $0,18~\mu g~NO_X/m^3$ und östlich der Insel Borkum weniger als $0,05~\mu g~NO_X/m^3$. Mit zunehmender Entfernung von der Fahrrinne der Außenems erfolgt eine weitere Abnahme der Immissions-Zusatzbelastung, wobei sich Linien gleicher Konzentration weitestgehend parallel zur Fahrrinne ausbilden. Im östlichen Bereich der Insel Norderney liegt die Immissions-Zusatzbelastung bei $< 0,01~\mu g~NO_X/m^3$.

Im Hinblick auf die Immissions-Vorbelastung von ca. 12 μ g/m³ tragen die für den Ist-Zustand berücksichtigten Emissionen lediglich einen Immissionsbeitrag von max. 1,5 % im direkten Nahbereich der Fahrrinne bei. In Entfernung > 2,2 km liegt der Beitrag bereits unter 1 % der Immissions-Vorbelastung.

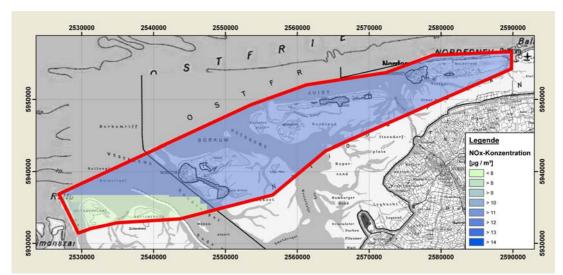
Abbildung 15. NO_X -Immissions-Zusatzbelastung in $\mu g/m^3$ im Betrachtungsbereich – IST-ZUSTAND

Abbildung 16. NO_X -Immissions-Zusatzbelastung in $\mu g/m^3$ im Bereich Borkum – IST-ZUSTAND

7.2.2 Prognose-Nullfall


Die Immissions-Zusatzbelastung für den Prognose-Nullfall beträgt am westlichen Rand der Insel Borkum max. $0,27~\mu g~NO_X/m^3$ und östlich der Insel Borkum $\le 0,06~\mu g~NO_X/m^3$. Mit zunehmendem Abstand zur Fahrrinne der Außenems erfolgt eine weitere Abnahme der Immissions-Zusatzbelastung, wobei sich Linien gleicher Konzentration weitestgehend parallel zur Fahrrinne ausbilden. Im östlichen Bereich der Insel Norderney liegt die Immissions-Zusatzbelastung bei $< 0,01~\mu g~NO_X/m^3$.

Die Immissions-Zusatzbelastung_{Prognose-Nullfall} liegt somit nur geringfügig oberhalb der Immissions-Zusatzbelastung_{Ist-Zustand} (vergleiche Kapitel 7.2.1). Die Veränderung gegenüber dem Ist-Zustand liegt bei weniger als 0,1 µg NO_x/m³.


Die Immissions-Zusatzbelastung des Prognose-Nullfalles aus den für die Betriebsphasen zu berücksichtigenden Emissionen (s. Kapitel 3.2) wird in den folgenden Abbildungen 17 und 19 dargestellt.

Auch im Hinblick auf die Immissions-Vorbelastung stellt die Zusatzbelastung aus dem Prognose-Nullfall keinen maßgeblichen Beitrag dar. Die zu erwartenden Zusatzbelastungen liegen unter 2,5 % der bestehenden Immissionsbelastung von ca. $12 \,\mu g/m^3$.

Die räumliche Verteilung der Immissions-Gesamtbelastung_{Prognose-Nullfall} (=Immissions-Vorbelastung + Immissions-Zusatzbelastung_{Prognose-Nullfall}) ist für den gesamten Betrachtungsbereich der Abbildung 18 und für den Bereich der Insel Borkum der Abbildung 20 zu entnehmen. Sie entspricht im wesentlichen der Immissions-Vorbelastung.

Abbildung 17. NO_X -Immissions-Zusatzbelastung in $\mu g/m^3$ im Betrachtungsbereich - PROGNOSE-NULLFALL

Abbildung 18. NO_X -Immissions-Gesamtbelastung in $\mu g/m^3$ im Betrachtungsbereich - PROGNOSE-NULLFALL

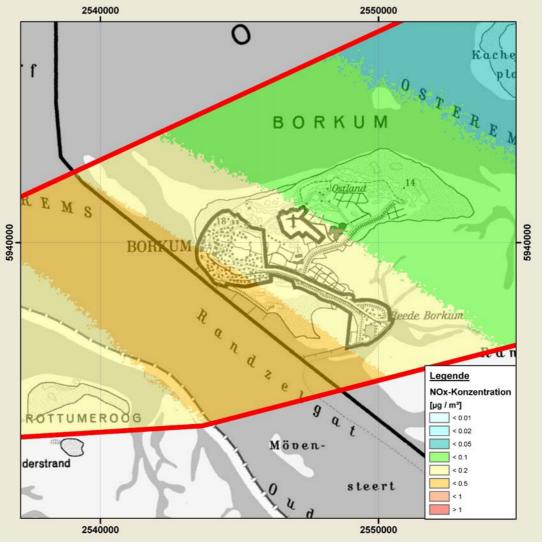


Abbildung 19. NO_X -Immissions-Zusatzbelastung in $\mu g/m^3$ im Bereich Borkum - PROGNOSE-NULLFALL

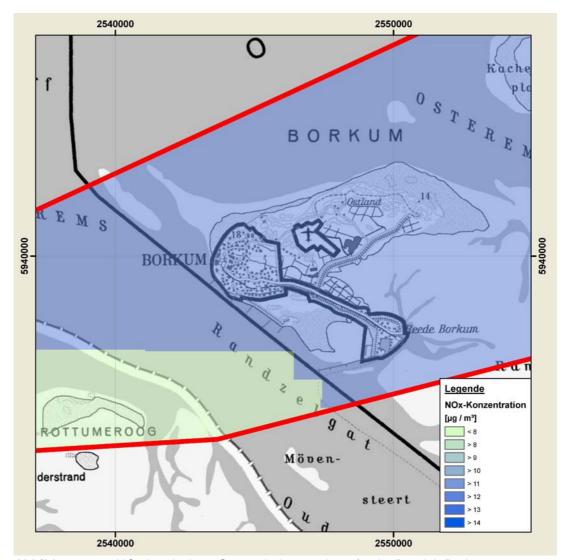
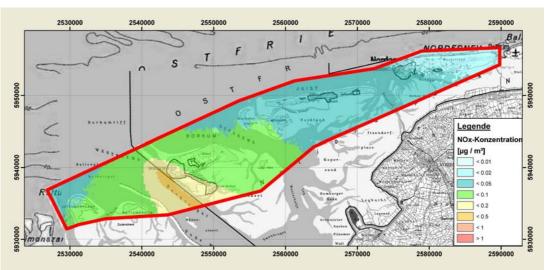
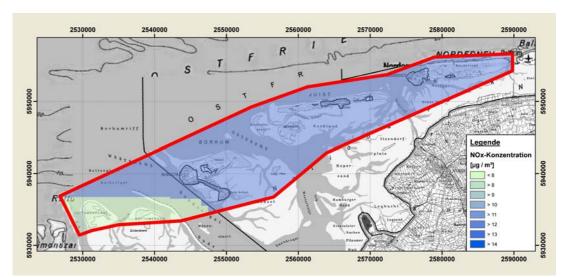


Abbildung 20. NO_X -Immissions-Gesamtbelastung in $\mu g/m^3$ im Bereich Borkum - PROGNOSE-NULLFALL


7.2.3 Bauphase

Für die Bauphase ergibt sich durch das geplante Vorhaben eine Immissions-Zusatzbelastung_{Bauphase} von max. 0,21 μg NO_x/m³ im Umfeld zur Klappstelle 4 auf Höhe der Insel Borkum. Von der Fahrrinne und der Klappstelle 4 aus nimmt die Immissions-Zusatzbelastung mit zunehmender Entfernung rasch ab. Am Ostrand der Insel Borkum liegt die Immissions-Zusatzbelastung bei 0,06 μg NO_x/m³.


Die räumliche Verteilung der Immissions-Zusatzbelastung_{Bauphase} ist für den gesamten Betrachtungsbereich der Abbildung 21 und für den Bereich der Insel Borkum der Abbildung 23 zu entnehmen.

Im Hinblick auf die Immissions-Vorbelastung stellt die Zusatzbelastung aus den Tätigkeiten der Bauphase keinen maßgeblichen Beitrag dar. Die zu erwartenden Zusatzbelastungen liegen unter 2 % der bestehenden Immissionsbelastung (= Immissions-Vorbelastung) von ca. 12 μ g/m³.

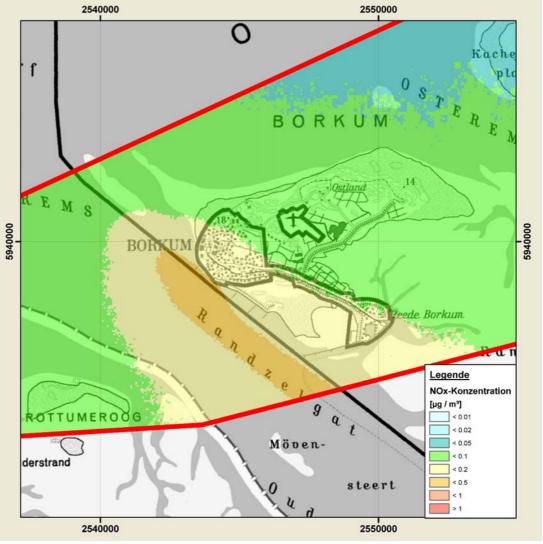

Die räumliche Verteilung der Immissions-Gesamtbelastung_{Bauphase} (=Immissions-Vorbelastung + Immissions-Zusatzbelastung_{Bauphase}) ist für den gesamten Betrachtungsbereich der Abbildung 22 und für den Bereich der Insel Borkum der Abbildung 24 zu entnehmen. Sie entspricht im wesentlichen der Immissions-Vorbelastung.

Abbildung 21. NO_X -Immissions-Zusatzbelastung in $\mu g/m^3$ im Betrachtungsbereich – BAUPHASE

Abbildung 22. NO_X -Immissions-Gesamtbelastung in $\mu g/m^3$ im Betrachtungsbereich - BAUPHASE

Abbildung 23. NO_X -Immissions-Zusatzbelastung in $\mu g/m^3$ im Bereich Borkum – BAUPHASE

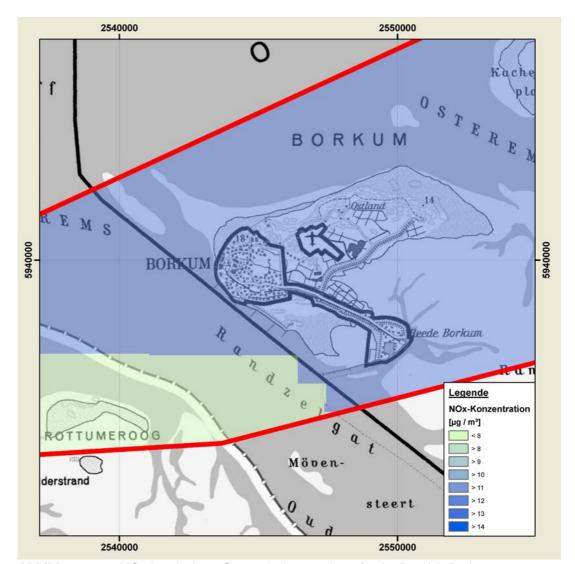
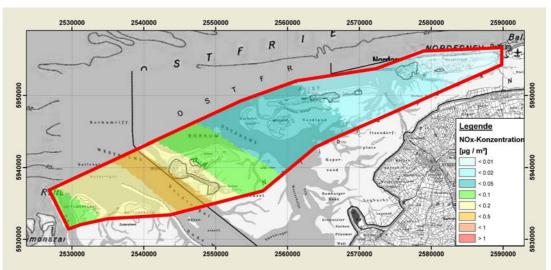
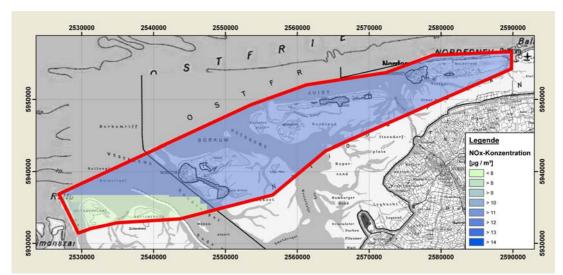


Abbildung 24. NO_X -Immissions-Gesamtbelastung in $\mu g/m^3$ im Bereich Borkum - BAUPHASE

7.2.4 Prognose-Ausbaufall


Die Immissions-Zusatzbelastung für den Prognose-Ausbaufall beträgt am westlichen Rand der Insel Borkum max. 0,23 µg NO $_{\rm X}/{\rm m}^3$ und östlich der Insel Borkum < 0,06 µg NO $_{\rm X}/{\rm m}^3$. Mit zunehmendem Abstand zur Fahrrinne der Außenems erfolgt eine weitere Abnahme der Immissions-Zusatzbelastung, wobei sich Linien gleicher Konzentration weitestgehend parallel zur Fahrrinne ausbilden. Im östlichen Bereich der Insel Norderney liegt die Immissions-Zusatzbelastung bei < 0,01 µg NO $_{\rm X}/{\rm m}^3$.

Die Immissions-Zusatzbelastung_{Prognose-Ausbaufall} liegt somit nur geringfügig oberhalb der Immissions-Zusatzbelastung_{Ist-Zustand} jedoch unterhalb der Immissions-Zusatzbelastung_{Prognose-Nullfall} (vergleiche Kapitel 7.2.1 und 7.2.2). Die Veränderung gegenüber dem Ist-Zustand liegt bei weniger als 0,1 μg NO_χ/m³.


Die Immissions-Zusatzbelastung des Prognose-Ausbaufalles aus den für die Betriebsphasen zu berücksichtigenden Emissionen (s. Kapitel 3.2) wird in den Abbildungen 25 und 27 dargestellt.

Im Hinblick auf die Immissions-Vorbelastung stellt die Zusatzbelastung aus den Tätigkeiten der Bauphase keinen maßgeblichen Beitrag dar. Die zu erwartenden Zusatzbelastungen liegen unter 2 % der bestehenden Immissionsbelastung (= Immissions-Jahres-Vorbelastung) von ca. 12 μ g/m³.

Die räumliche Verteilung der Immissions-Gesamtbelastung_{Prognose-Nullfall} (=Immissions-Vorbelastung + Immissions-Zusatzbelastung_{Prognose-Ausbaufall}) ist den Abbildungen 26 (gesamter Betrachtungsbereich) und 28 (Insel Borkum) zu entnehmen. Sie entspricht im wesentlichen der Immissions-Vorbelastung.

Abbildung 25. NOx-Immissions-Zusatzbelastung in μg/m³ im Betrachtungsbereich - PROGNOSE-AUSBAUFALL

Abbildung 26. NOx-Immissions-Gesamtbelastung in $\mu g/m^3$ im Betrachtungsbereich - PROGNOSE-AUSBAUFALL

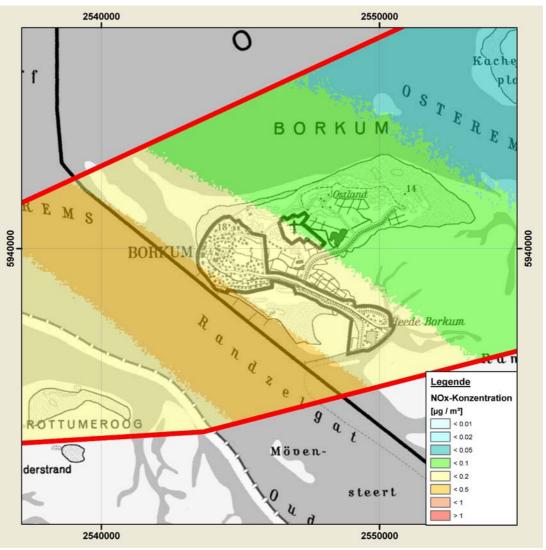


Abbildung 27. NOx-Immissions-Zusatzbelastung in $\mu g/m^3$ im Bereich Borkum - PROGNOSE-AUSBAUFALL

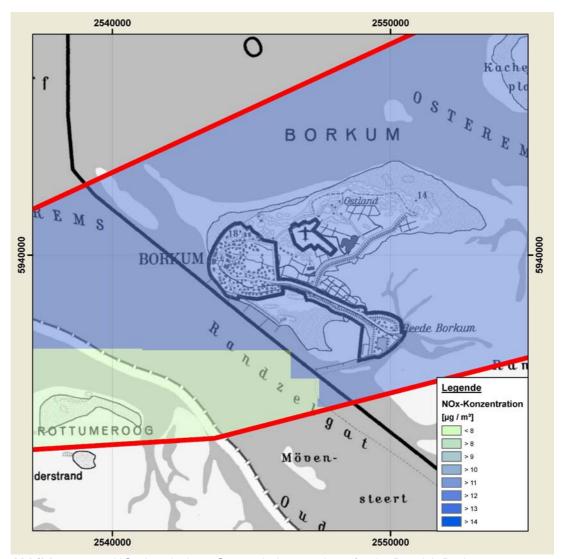
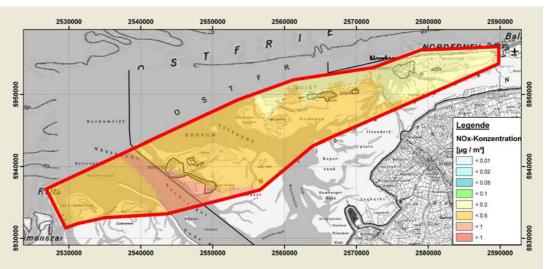
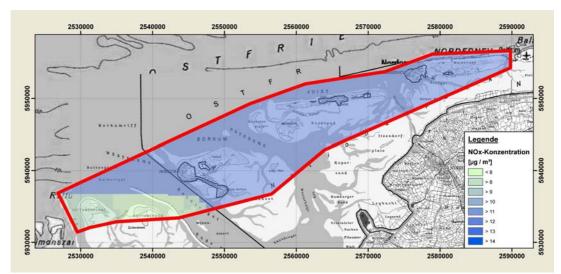


Abbildung 28. NOx-Immissions-Gesamtbelastung in $\mu g/m^3$ im Bereich Borkum - PROGNOSE-AUSBAUFALL

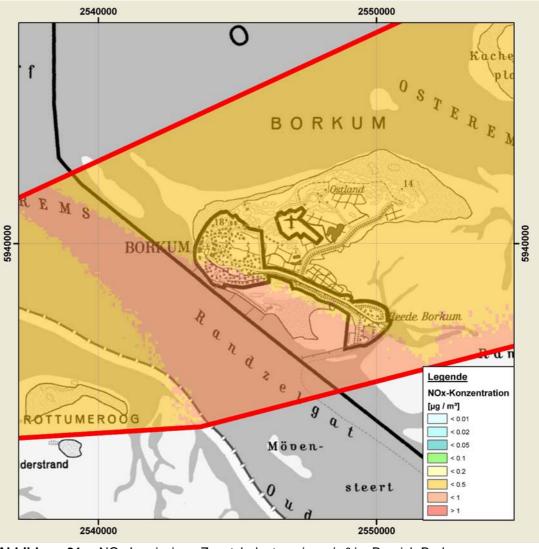
7.2.5 Prognose-Ausbaufall inkl. anderer Vorhaben


Die Immissions-Zusatzbelastung für den Prognose-Ausbaufall inkl. anderer Vorhaben beträgt max. $0,62~\mu g~NO_X/m^3$ auf der Insel Borkum (der Bereich der max. Immissions-Zusatzbelastung_{inkl. anderer Vorhaben} liegt im südlichen Bereich der Insel) und min. < $0,02~\mu g~NO_X/m^3$ im Bereich der Insel Norderney. Die Abnahme der Immissions-Zusatzbelastung erfolgt weniger ausgeprägt als im Prognose-Ausbaufall (s. Kapitel 7.2.4), was maßgeblich in den Ableithöhen der anderer Vorhaben von zum Teil > 60 m über Grund begründet ist. Linien gleicher Konzentration bilden sich weitestgehend konzentrisch um dem Emissionsschwerpunkt der anderer Vorhaben (Eemshaven) aus, wobei im Bereich der Fahrrinne eine Überlagerung mit den Emissionen aus den Schiffsbewegungen erfolgt.

Die Zusatzbelastung aus dem Prognose- Ausbaufall inkl. anderer Vorhaben liegt im Bereich des Maximums auf der Insel Borkum bei ca. 5 % der bestehenden Immissionsbelastung von 12 μg/m³.


Ein Vergleich mit den Ergebnissen für die Immissions-Zusatzbelastung_{Prognose-Ausbaufall} (s. Kapitel 7.2.4) zeigt, dass die Immissions-Zusatzbelastung_{inkl. anderer Vorhaben} überwiegend (zu ca. 2/3 im Bereich des Maximums auf der Insel Borkum) aus den Emissionen der zusätzlich berücksichtigten *anderen Vorhaben* (s. Kapitel 4) resultiert.

Die räumliche Verteilung der Immissions-Zusatzbelastung_{inkl. anderer Vorhaben} ist für den gesamten Betrachtungsbereich der Abbildung 29 und für den Bereich der Insel Borkum der Abbildung 31 zu entnehmen.


Die räumliche Verteilung der Immissions-Gesamtbelastung_{inkl. anderer Vorhaben} (=Immissions-Vorbelastung + Immissions-Zusatzbelastung_{inkl. anderer Vorhaben}) ist für den gesamten Betrachtungsbereich der Abbildung 30 und für den Bereich der Insel Borkum der Abbildung 32 zu entnehmen. Sie entspricht im wesentlichen der Immissions-Vorbelastung.

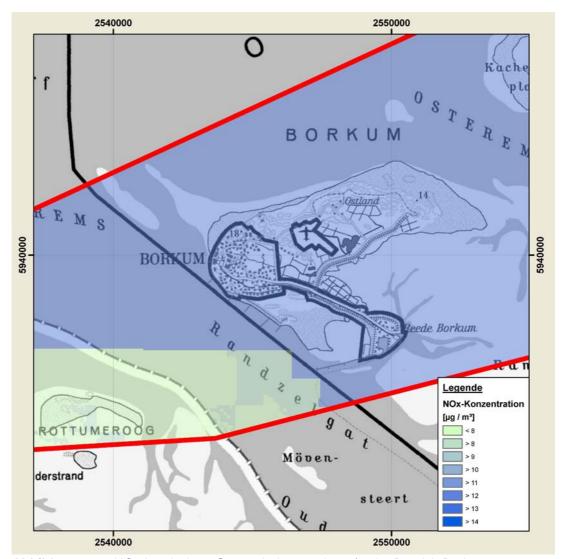
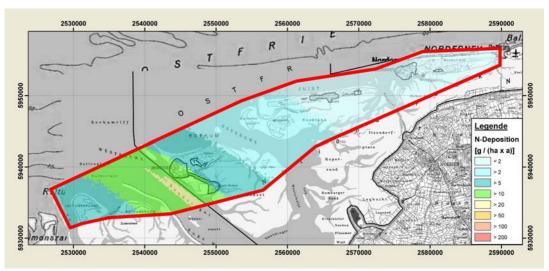

Abbildung 29. NO_X -Immissions-Zusatzbelastung in $\mu g/m^3$ im Betrachtungsbereich - PROGNOSE-AUSBAUFALL inkl. ANDERER VORHABEN

Abbildung 30. NO_X -Immissions-Gesamtbelastung in $\mu g/m^3$ im Betrachtungsbereich - PROGNOSE-AUSBAUFALL inkl. ANDERER VORHABEN

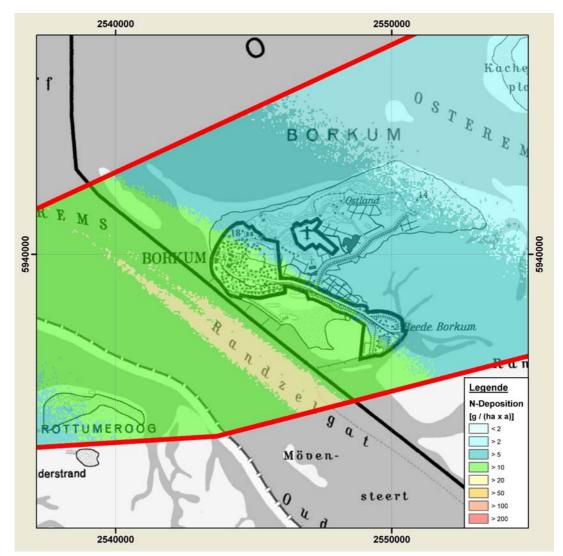
Abbildung 31. NO_X -Immissions-Zusatzbelastung in $\mu g/m^3$ im Bereich Borkum - PROGNOSE-AUSBAUFALL inkl. ANDERER VORHABEN

Abbildung 32. NO_X -Immissions-Gesamtbelastung in $\mu g/m^3$ im Bereich Borkum - PROGNOSE-AUSBAUFALL inkl. ANDERER VORHABEN

7.3 Stickstoffdeposition


7.3.1 Ist-Zustand

Während die Immissions-Gesamtbelastung des Ist-Zustand, also die derzeitige Immissions-Vorbelastung, als Ermittlungsgrundlage für die zukünftig zu erwartende Immissionsbelastung im Betrachtungsbereich herangezogen wird, dient die Angabe der Immissions-Zusatzbelastung_{Ist-Zustand} zur Anteilsermittlung erwarteter Immissionsveränderungen im Betrachtungsbereich durch das geplante Vorhaben (hier: Außenems-Vertiefung).


Zur Ermittlung der Immissions-Zusatzbelastung_{Ist-Zustand} werden wie vorangehend dargestellt die Emissionen des Schiffsverkehrs (Stückgut-, Massengut-, Tank- und Fahrzeugtransportschiffe) in der Außenems des Jahres 2006 (s. Kapitel 3.2) herangezogen.

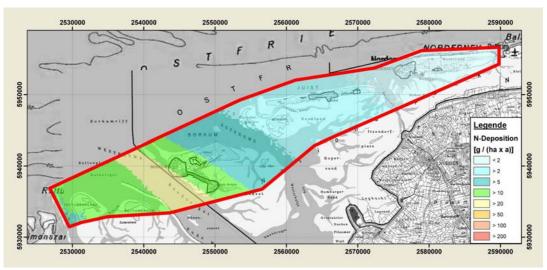
Die Immissions-Zusatzbelastung_{Ist-Zustand} wird in den folgenden Abbildungen 33 und 34 dargestellt. Diese beträgt im Westen der Insel Borkum max. 17 g N/(ha \times a) und östlich der Insel Borkum weniger als 5 g N/(ha \times a). Mit zunehmender Entfernung von der Fahrrinne der Außenems erfolgt eine weitere Abnahme der Immissions-Zusatzbelastung, wobei sich Linien gleicher Depositionswerte weitestgehend parallel zur Fahrrinne ausbilden. Im östlichen Bereich der Insel Norderney liegt die Immissions-Zusatzbelastung bei < 2 g N/(ha \times a).

Im Hinblick auf die Immissions-Vorbelastung von > 10.000 g N/(ha \times a) tragen die für die Betriebsphase berücksichtigten Emissionen für den Ist-Zustand einen Immissionsbeitrag von kleiner 1 % im direkten Nahbereich der Fahrrinne bei.

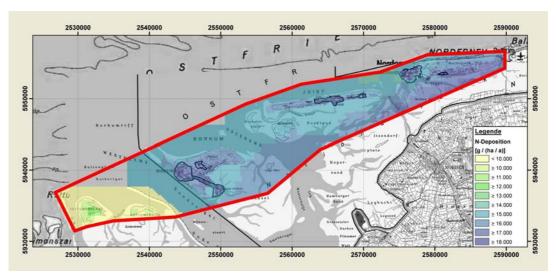
Abbildung 33. N-Depositions-Zusatzbelastung in $g/(ha \times a)$ im Betrachtungsbereich - IST-ZUSTAND

Abbildung 34. N-Depositions-Zusatzbelastung in $g/(ha \times a)$ im Bereich Borkum - IST-ZUSTAND

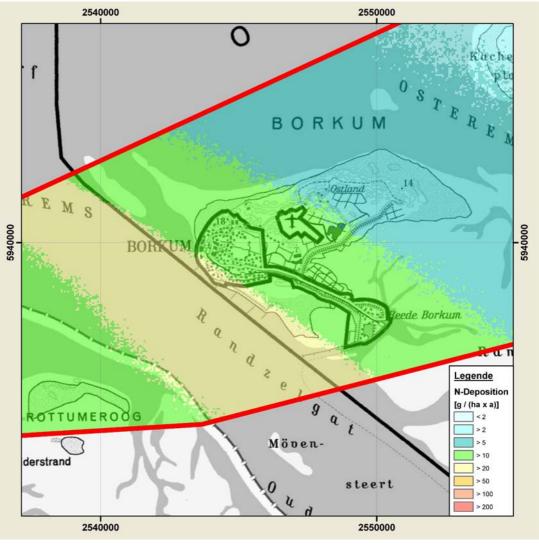
7.3.2 Prognose-Nullfall


Die Immissions-Zusatzbelastung für den Prognose-Nullfall beträgt im Westen der Insel Borkum max. 24 g N/(ha \times a) und östlich der Insel Borkum < 8 g N/(ha \times a). Mit zunehmendem Abstand zur Fahrrinne der Außenems erfolgt eine weitere Abnahme der Immissions-Zusatzbelastung, wobei sich Linien gleicher Depositionswerte weitestgehend parallel zur Fahrrinne ausbilden. Im östlichen Bereich der Insel Norderney liegt die Immissions-Zusatzbelastung bei < 2 g N/(ha \times a).

Die Immissions-Zusatzbelastung $_{Prognose-Nullfall}$ liegt somit nur geringfügig oberhalb der Immissions-Zusatzbelastung $_{Ist-Zustand}$ (vergleiche Kapitel 7.3.1). Die Veränderung gegenüber dem Ist-Zustand liegt bei weniger als 8 g N/(ha \times a).


Die Immissions-Zusatzbelastung des Prognose-Nullfalles aus den für die Betriebsphasen zu berücksichtigenden Emissionen (s. Kapitel 3.2) wird in den Folgenden Abbildungen 35 und 37 dargestellt.

Auch im Hinblick auf die Immissions-Vorbelastung stellt die Zusatzbelastung aus dem Prognose-Nullfall keinen maßgeblichen Beitrag dar. Die zu erwartenden Zusatzbelastungen liegen unter 1 % der bestehenden min. Immissionsvorbelastung im Betrachtungsbereich von $10.000 \text{ g N/(ha} \times \text{a)}$.


Die räumliche Verteilung der Immissions-Gesamtbelastung_{Prognose-Nullfall} (=Immissions-Vorbelastung + Immissions-Zusatzbelastung_{Prognose-Nullfall}) ist für den gesamten Betrachtungsbereich der Abbildung 36 und für den Bereich der Insel Borkum der Abbildung 38 zu entnehmen. Sie entspricht im wesentlichen der Immissions-Vorbelastung.

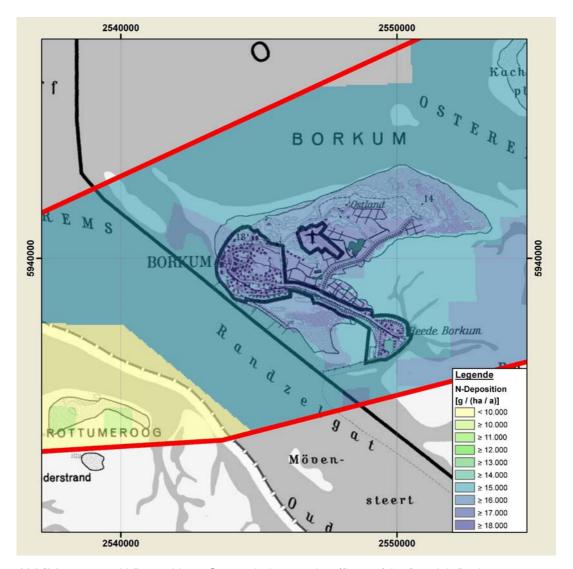
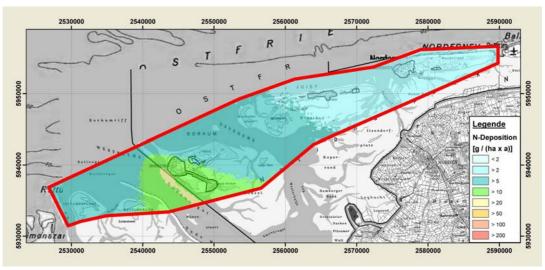

Abbildung 35. N-Depositions-Zusatzbelastung in $g/(ha \times a)$ im Betrachtungsbereich - PROGNOSE-NULLFALL

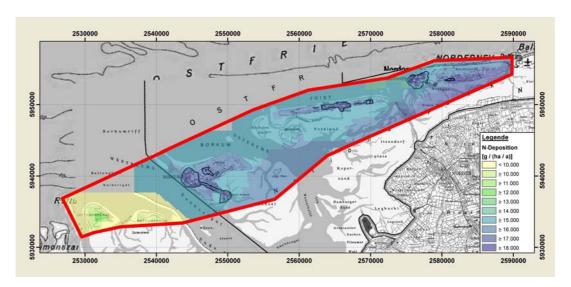
Abbildung 36. N-Depositions-Gesamtbelastung in $g/(ha \times a)$ im Betrachtungsbereich - PROGNOSE-NULLFALL

Abbildung 37. N-Depositions-Zusatzbelastung in $g/(ha \times a)$ im Bereich Borkum - PROGNOSE-NULLFALL

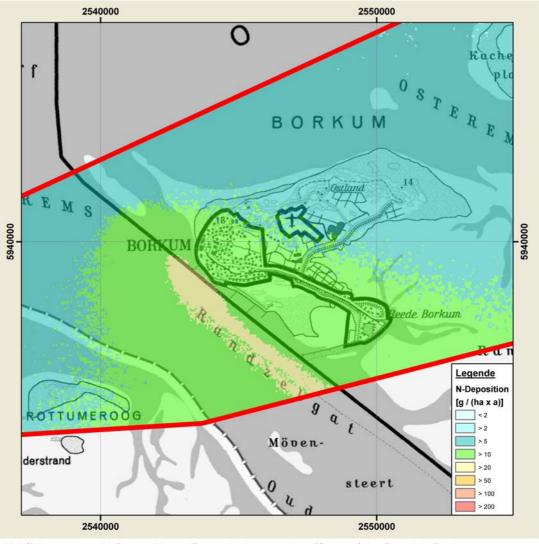
Abbildung 38. N-Depositions-Gesamtbelastung in g/(ha \times a) im Bereich Borkum - PROGNOSE-NULLFALL


7.3.3 Bauphase

Für die Bauphase ergibt sich durch das geplante Vorhaben eine Immissions-Zusatzbelastung_{Bauphase} von max. 20 g N/(ha \times a) auf der Insel Borkum im Umfeld zur Klappstelle 4 in Höhe von Ems-km 90,0. Von der Fahrrinne und der Klappstelle 4 aus nimmt die Immissions-Zusatzbelastung mit der Entfernung rasch ab. Am Ostrand der Insel Borkum liegt die Immissions-Zusatzbelastung bereits bei 7 g N/(ha \times a).


Die räumliche Verteilung der Immissions-Zusatzbelastung_{Bauphase} ist für den gesamten Betrachtungsbereich der Abbildung 39 und für den Bereich der Insel Borkum der Abbildung 41 zu entnehmen.

Im Hinblick auf die Immissions-Vorbelastung stellt die Zusatzbelastung aus den Tätigkeiten der Bauphase keinen maßgeblichen Beitrag dar. Die zu erwartenden Zusatzbelastungen liegen deutlich unter 1 % der bestehenden min. Immissionsbelastung im Betrachtungsbereich von ca. $10.000 \text{ g N/(ha} \times \text{a})$.


Die räumliche Verteilung der Immissions-Gesamtbelastung_{Bauphase} (=Immissions-Vorbelastung + Immissions-Zusatzbelastung_{Bauphase}) ist für den gesamten Betrachtungsbereich der Abbildung 40 und für den Bereich der Insel Borkum der Abbildung 42 zu entnehmen. Sie entspricht im wesentlichen der Immissions-Vorbelastung.

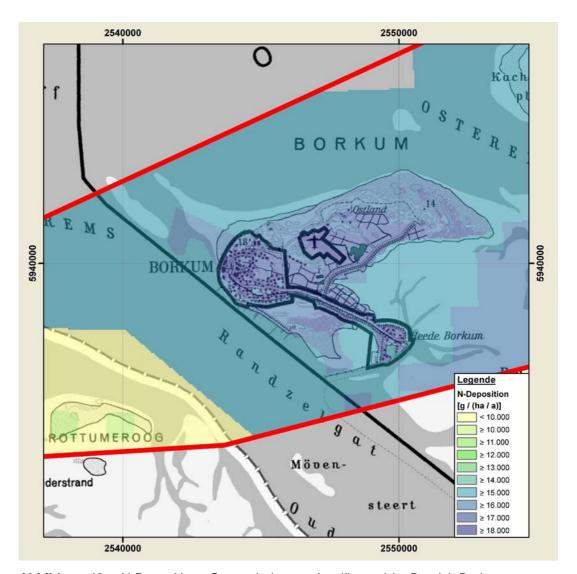
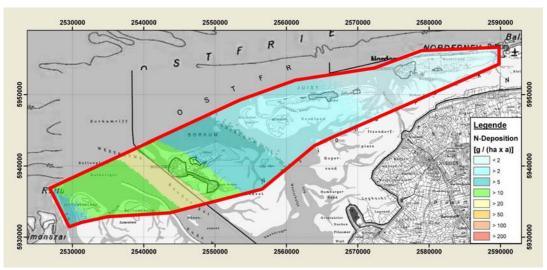

Abbildung 39. N-Depositions-Zusatzbelastung in $g/(ha \times a)$ im Betrachtungsbereich - BAUPHASE

Abbildung 40. N-Depositions-Gesamtbelastung in $g/(ha \times a)$ im Betrachtungsbereich - BAUPHASE

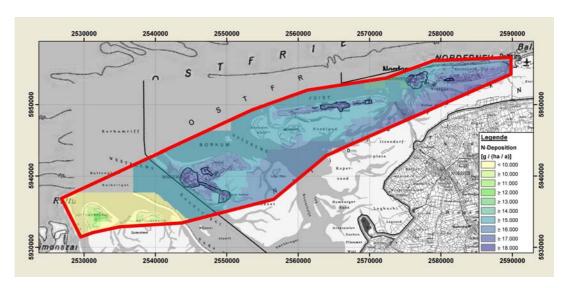
Abbildung 41. N-Depositions-Zusatzbelastung in $g/(ha \times a)$ im Bereich Borkum - BAUPHASE

Abbildung 42. N-Depositions-Gesamtbelastung in g/(ha \times a) im Bereich Borkum - BAUPHASE

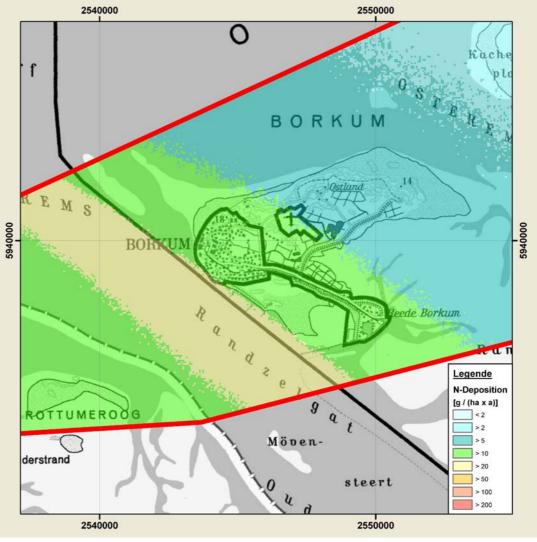
7.3.4 Prognose-Ausbaufall


Die Immissions-Zusatzbelastung für den Prognose-Ausbaufall beträgt im Westen der Insel Borkum max. 22 g N/(ha \times a) und östlich der Insel Borkum < 7 g N/(ha \times a). Mit zunehmendem Abstand zur Fahrrinne der Außenems erfolgt eine weitere Abnahme der Immissions-Zusatzbelastung, wobei sich Linien gleicher Depositionswerte weitestgehend parallel zur Fahrrinne ausbilden. Im östlichen Bereich der Insel Norderney liegt die Immissions-Zusatzbelastung bei < 2 g N/(ha \times a).

Die Immissions-Zusatzbelastung $_{Prognose-Ausbaufall}$ liegt somit nur geringfügig oberhalb der Immissions-Zusatzbelastung $_{Ist-Zustand}$, jedoch unterhalb der Immissions-Zusatzbelastung $_{Prognose-Nullfall}$ (vergleiche Kapitel 7.3.1 und 7.3.2). Die Veränderung gegenüber dem Ist-Zustand liegt bei weniger als 6 g N/(ha \times a).


Die Immissions-Zusatzbelastung des Prognose-Ausbaufalles aus den für die Betriebsphasen zu berücksichtigenden Emissionen (s. Kapitel 3.2) wird in den Abbildungen 43 und 45 dargestellt.

Auch die Zusatzbelastung aus dem Prognose-Ausbaufall stellt im Hinblick auf die Immissions-Vorbelastung keinen maßgeblichen Beitrag dar. Die zu erwartenden Zusatzbelastungen liegen unter 1 % der bestehenden min. Immissionsbelastung im Betrachtungsbereich von ca. 10.000 g $N/(ha \times a)$.


Die räumliche Verteilung der Immissions-Gesamtbelastung_{Prognose-Nullfall} (=Immissions-Vorbelastung + Immissions-Zusatzbelastung_{Prognose-Ausbaufall}) ist den Abbildungen 44 (gesamter Betrachtungsbereich) und 46 (Insel Borkum) zu entnehmen. Sie entspricht im wesentlichen der Immissions-Vorbelastung.

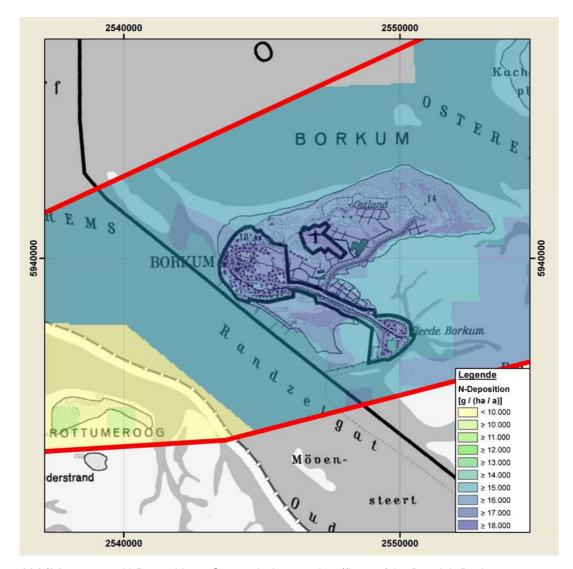

Abbildung 43. N-Depositions-Zusatzbelastung in $g/(ha \times a)$ im Betrachtungsbereich - PROGNOSE-AUSBAUFALL

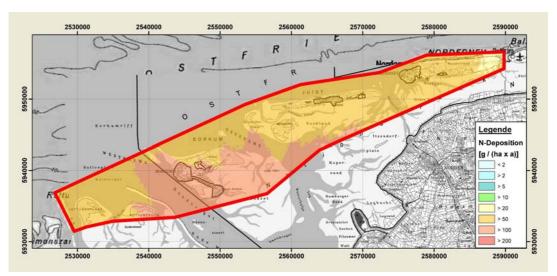
Abbildung 44. N-Depositions-Gesamtbelastung in g/(ha \times a) im Betrachtungsbereich - PROGNOSE-AUSBAUFALL

Abbildung 45. N-Depositions-Zusatzbelastung in $g/(ha \times a)$ im Bereich Borkum - PROGNOSE-AUSBAUFALL

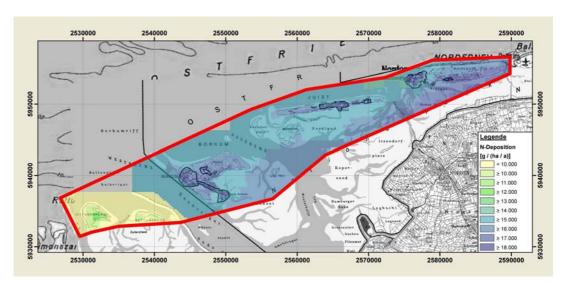
Abbildung 46. N-Depositions-Gesamtbelastung in g/(ha \times a) im Bereich Borkum - PROGNOSE-AUSBAUFALL

P:\zmn\85\85636\M85636 01 BER 11D.DOC:16. 01. 2012

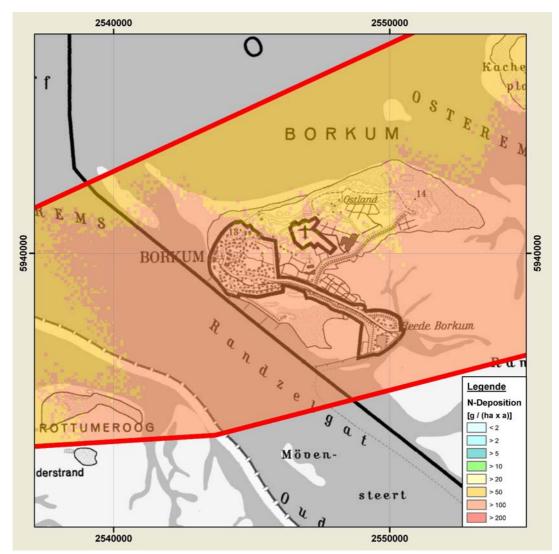
7.3.5 Prognose-Ausbaufall inkl. anderer Vorhaben


Die Immissions-Zusatzbelastung für den Prognose-Ausbaufall inkl. anderer Vorhaben beträgt max. 130 g N/(ha \times a) auf der Insel Borkum (der Bereich der max. Immissions-Zusatzbelastung $_{\text{inkl. anderer Vorhaben}}$ liegt im südlichen Bereich der Insel) und min. > 20 g N/(ha \times a) im östlichen Bereich der Insel Norderney. Die Abnahme der Immissions-Zusatzbelastung mit zunehmendem Abstand von den Emissionsquellen erfolgt weniger ausgeprägt als im Prognose-Ausbaufall (s. Kapitel 7.2.4), was maßgeblich in den Ableithöhen der anderer Vorhaben von zum Teil > 60 m über Grund begründet ist. Linien gleicher Depositionswerte bilden sich weitestgehend konzentrisch um dem Emissionsschwerpunkt der anderer Vorhaben (Eemshaven) aus, wobei im Bereich der Fahrrinne eine Überlagerung mit den Immissionsbeiträgen aus den Emissionen der Schiffsbewegungen erfolgt.

Ein Vergleich mit den Ergebnissen für die Immissions-Zusatzbelastung_{Prognose-Ausbaufall} (s. Kapitel 7.3.4) zeigt, dass die Immissions-Zusatzbelastung_{inkl. anderer Vorhaben} überwiegend (zu ca. 4/5 im Bereich des Maximums auf der Insel Borkum) aus den Emissionen der zusätzlich berücksichtigten *anderen Vorhaben* (s. Kapitel 4) resultiert.


Die räumliche Verteilung der Immissions-Zusatzbelastung_{inkl. anderer Vorhaben} ist für den gesamten Betrachtungsbereich der Abbildung 47 und für den Bereich der Insel Borkum der Abbildung 49 zu entnehmen.

Auch die Immissions-Zusatzbelastung $_{inkl.\ anderer\ Vorhaben}$ stellt im Hinblick auf die Immissions-Vorbelastung keinen maßgeblichen Beitrag dar. Die zu erwartenden Zusatzbelastungen liegen unter 1,5 % der bestehenden min. Immissionsbelastung im Betrachtungsbereich von ca. 10.000 g N/(ha \times a).


Die räumliche Verteilung der Immissions-Gesamtbelastung_{inkl. anderer Vorhaben} (= Immissions-Vorbelastung + Immissions-Zusatzbelastung_{inkl. anderer Vorhaben}) ist für den gesamten Betrachtungsbereich der Abbildung 48 und für den Bereich der Insel Borkum der Abbildung 50 zu entnehmen. Sie entspricht im wesentlichen der Immissions-Vorbelastung.

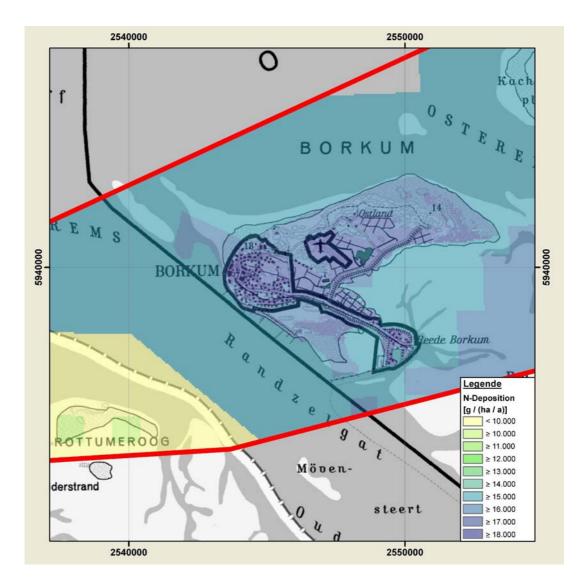

Abbildung 47. N-Depositions-Zusatzbelastung in $g/(ha \times a)$ im Betrachtungsbereich - PROGNOSE-AUSBAUFALL inkl. ANDERER VORHABEN

Abbildung 48. N-Depositions-Gesamtbelastung in $g/(ha \times a)$ im Betrachtungsbereich - PROGNOSE-AUSBAUFALL inkl. ANDERER VORHABEN

Abbildung 49. N-Depositions-Zusatzbelastung in $g/(ha \times a)$ im Bereich Borkum - PROGNOSE-AUSBAUFALL inkl. ANDERER VORHABEN

Abbildung 50. N-Depositions-Gesamtbelastung in g/(ha \times a) im Bereich Borkum - PROGNOSE-AUSBAUFALL inkl. ANDERER VORHABEN

8 Zusammenfassung

Das Land Niedersachsen und die Emder Hafenwirtschaft streben eine Vertiefung der Außenems von Ems-km 40,7 bis Ems-km 74,6 an. In diesem rund 34 km langen Vorhabensbereich soll die Sollhöhe der Fahrrinne um bis zu 1,0 m abgesenkt werden.

Die Gutachtergemeinschaft IBL Umweltplanung GmbH (IBL) und IMS Ingenieurgesellschaft mbH (IMS) bearbeitet seit Mai 2009 im Auftrag des Wasserschifffahrtsamts Emden (WSA Emden) das Projekt "Vertiefung der Außenems bis Emden". Der Auftrag beinhaltet u.a. die Erstellung verschiedener Umweltunterlagen (UVU, FFH-VU, LBP, Beitrag Wasserrahmenrichtlinie und Artenschutz) als Teil der Genehmigungsplanung.

Um gemäß den Anforderungen des Untersuchungsrahmens zur UVU vom 17.04.2009, Schutzgüter Mensch und Pflanzen sowie insbesondere in der FFH-VU eine belastbare Prognose vorhabensbedingter Wirkungen und Auswirkungen vorlegen zu können, ist die Erstellung einer Immissionsprognose zu vorhabensbedingten Stickstoffimmissionen und -depositionen erforderlich.

Die Müller-BBM GmbH wurde hierzu von der IBL beauftragt die entsprechenden Emissions- und Immissionsberechnungen sowie die Auswertung der Immissionsvorbelastung durchzuführen.

Es wurden hierzu Untersuchungen zu den Stickstoffimmissionen für die Betriebsphase der Wasserstraße (Ist-Zustand, Prognose-Nullfall und Prognose-Ausbaufall) sowie für die *Bauphase* durchgeführt. Für den Prognose-Ausbaufall wurden zudem Immissionsbeiträge anderer Vorhaben berücksichtigt.

Die Ergebnisse sind im vorliegenden Bericht graphisch dokumentiert und können bzgl. der Zusatzbelastungen im Bereich der Landflächen (Inseln) im Betrachtungsbereich wie folgt zusammengefasst werden:

- Stickstoffoxidkonzentration:

Im Rahmen der betrachteten Szenarien wurden für die Betriebsphase (Ist-Zustand, Prognose-Nullfall und Prognose-Ausbau) Immissions-Jahres-Zusatzbelastungen von max. 0,27 μ g NO_X/m³ am westlichen Rand der Insel Borkum berechnet, wobei die höchste Zusatzbelastung im Szenario Prognose-Nullfall auftritt ¹². Für die Bauphase wurden Werte von max. 0,21 μ g NOX/m³ berechnet.

Die berechneten Zusatzbelastungen der betrachteten Szenarien ohne Berücksichtigung *anderer Vorhaben* liegen im Maximum bei < 2,5 % der Vorbelastung.

Unter Berücksichtigung der betrachteten *anderen Vorhaben* liegt die max. Immissions-Jahres-Zusatzbelastung bei 0,62 µg NO_x/m³ im südlichen Bereich der

Der Umstand, dass die höchsten Immissions-Zusatzbelastungen im Prognose-Nullfall auftreten, resultiert aus den der Berechnung zu Grunde liegenden Rahmendaten für die Schiffsbewegungen auf der Außenems (s. Tabelle 9). Hier weist der Prognose-Nullfall die höchste Anzahl an Schiffsbewegungen sowie die längsten Wartezeiten für tideabhängige Schiffe auf.

P:\zmn\85\85636\M85636 01 BER 11D.DOC:16. 01. 2012

Insel Borkum. Zusätzliche NO_X-Konzentration im Prognosejahr 2025 resultieren damit wesentlich aus den betrachteten anderen Vorhaben.

Die berechnete Zusatzbelastung des Szenarios mit Berücksichtigung *anderer Vorhaben* liegt im Maximum bei ca. 5 % der Vorbelastung.

- Stickstoffdeposition:

Im Betrachtungsbereich wurden Depositions-Zusatzbelastungen für die Betriebsphase von max. 24 g N/(ha \times a) am westlichen Rand der Insel Borkum berechnet, wobei die höchste Zusatzbelastung, wie bei der Stickstoffoxidkonzentration, im Szenario Prognose-Nullfall auftritt. Für die Bauphase wurden Werte von max. 20 g N/(ha \times a) (Lage des Maximums ebenfalls am westlichen Rand der Insel Borkum) berechnet.

Die berechneten Zusatzbelastungen der betrachteten Szenarien ohne Berücksichtigung *anderer Vorhaben* liegen im Maximum unter 1 % der Vorbelastungsdaten.

Unter Berücksichtigung der betrachteten anderen Vorhaben liegt die max. Depositions-Zusatzbelastung bei 130 g N/(ha \times a) im südlichen Bereich der Insel Borkum. Zusätzliche N-Deposition im Prognosejahr 2025 resultieren damit wesentlich aus den betrachteten anderen Vorhaben.

Die berechnete Zusatzbelastung des Szenarios mit Berücksichtigung *anderer Vorhaben* liegt im Maximum unter 1,5 % der Vorbelastungsdaten.

Es erfolgt ergänzend eine GIS-kompatible Bereitstellung der Daten an den Auftraggeber, so dass im Rahmen weiterer Untersuchungen (z. B. UVU, FFH-VU) einzelne Bereiche detaillierter betrachtet/dargestellt werden können.

Eine Beurteilung und Bewertung der berechneten Immissionen erfolgt an anderer Stelle durch die IBL.

Dipl.-Geol. Boris Zimmermann

P:\zmn\85\85636\M85636_01_BER_11D.DOC:16. 01. 2012

9 Grundlagen und Literatur

- [1] Erste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft TA Luft) vom 24. Juli 2002 (GMBI. Nr. 25 29 vom 30.07.2002 S. 511)
- [2] Dispersion Model LASAT, Version 3.1.23-WI10-mx
- [3] VDI 3782 Bl. 5, Umweltmeteorologie Atmosphärische Ausbreitungsmodelle Depositionsparameter. April 2006
- [4] VDI 3783 Bl. 13, Qualitätssicherung in der Immissionsprognose Anlagenbezogener Immissionsschutz – Ausbreitungsrechnungen gemäß TA Luft. Januar 2010
- [5] VDI 3945 Bl. 3: Umweltmeteorologie Atmosphärische Ausbreitungsmodelle Partikelmodell. September 2000
- [6] European Environment Agency (2006): EMEP/CORINAIR Emission Inventory Guidebook 2006, Shipping activities http://www.eea.europa.eu/publications/EMEPCORINAIR4/B842vs3.4.pdf
- [7] Entec UK Ltd. (2005): Servic contract on Ship Emissions: Assignment, Abatement and Market based Instruments, Final Report
- [8] Gauss GmbH (2008): Quantifizierung von gasförmigen Emissionen durch Maschinenanlagen der Seeschifffahrt an der deutschen Küste, Bremen
- [9] Brandt, F. (1981): Brennstoffe und Verbrennungsrechnung, FDBR-Fachbuchreihe Band 1, Vulkan Verlag Essen
- [10] Bachhiesl, M., Narodoslawsky, M., Sturm, P.-J. (2002): Berechnung des Depositionsflusses als Grundlage für ökotoxikologische Beurteilungen. UVPreport 1+2/2002
- [11] DWD (2010): Ermittlung eines repräsentativen Jahres für die Messstation Borkum. Az.: KU11A/A1873/10, Deutscher Wetterdienst DWD, Abteilung Klimaund Umweltberatung, Offenbach, 16.06.2010
- [12] DWD (2010): Meteorologische Zeitreihe (AKTerm) mit den Winddaten der Station Borkum und den Bedeckungsdaten der Station Norderney von 2001. Deutscher Wetterdienst, Offenbach
- [13] DWD (2010): Zeitreihe der stündlichen Niederschlagshöhe der Station Norderney von 2001. Deutscher Wetterdienst, Offenbach
- [14] Wasser- und Schifffahrtsdirektion Nordwest (2009): Festlegung des Untersuchungsrahmens gem. § 5 des Gesetzes über die Umweltverträglichkeitsprüfung (UVPG)
- [15] Projektgruppe Projektsteuerung Tideems (2008): Vertiefung der Außenems bis Emden Unterlage zum Scoping-Termin nach § 5 UVPG. Emden
- [16] PLANCO Consulting GmbH (2007): Nutzen-Kosten-Untersuchung einer Vertiefung der Außenems. Essen, Oktober 2007

- Aktennotiz Nr. 07: Festlegung der Schiffsverkehrszahlen zur Durchführung der Schallberechnung. 08.10.2009,
- Aktennotiz Nr. 12: Leistungsbeschreibung zur erforderlichen Immissionsprognose Stickstoff. 02.02.2010,
- Stellungnahme "Fachbeitrag Immissionsschutzgutachten",
- Bioptoptypenkartierung (TMAP) Juist, Borkum, Norderney sowie
- weitere schriftliche und telefonische Auskünfte
- [18] Topographische Karten
- [19] Rijkswaterstaat Noord-Nederland: Verbesserung der Fahrrinne Eemshaven-Nordsee - Zusammenfassung des Umweltverträglichkeitsberichtes. Mai 2009 http://www.centrumpp.nl/Images/Zusammenfassung%20MER_tcm306-269016.pdf
- [20] Provincie Groningen: Emissies Eemshaven. eMail vom 05. Oktober 2010 einschließlich Korrektur per eMail vom 17. November 2010
- [21] Staatliches Gewerbeaufsichtsamt Hildesheim: Luftqualitätsüberwachung in Niedersachsen Jahresberichte 2008 und 2009
- [22] Staatliches Gewerbeaufsichtsamt Hildesheim: Lufthygienisches Überwachungssystem Niedersachsen (LÜN) Jahresberichte 2005 2007
- [23] Umweltbundesamt: Kartographische Darstellung der flächenhaften Immissionsbelastung in Deutschland durch Kombination von Messung und Modellrechnung - Interaktiver Kartendienst. Stand 29.10.2010 http://gis.uba.de/Website/luft/index.htm
- [24] Umweltbundesamt (2011): Vorbelastungsdaten Stickstoff TA Luft Nr. 4.8 -Genehmigungsverfahren. Stand 2007 (Datenanfrage 03.03.2010; Datenbereitstellung 26.05.2011) http://gis.uba.de/website/depo1/index.htm
- [25] Planbureau voor de Leefomgeving: Grootschalige Concentratiekaarten Nederland 2009. 24. März 2010 http://www.pbl.nl/nl/themasites/gcn/index.html

Anhang A

Stickstoffoxid- und Ammoniakemissionsquellen der Fahrrinne Eemshaven-Nordzee

P:\zmn\85\85636\M85636_01_BER_11D.DOC:16. 01. 2012

Tabelle 19. Stickstoffoxid- und Ammoniakemissionsquellen der Fahrrinne Eemshaven-Nordzee mit Emissionsrandbedingungen (nach [20])

	Quellen		Koordinaten (Gauss-Krüger)		Ableitbe- dingungen		Emis	ssionspa		Emissionen			
ž	Beschreibung	Rechtswert [m]	Hochwert [m]	Schornsteinhöhe [m]	nnendurchmesser [m]	Abgasgeschindigkeit [m/s]	Abgastemperatur [°C]	Abgasvolumen [m³/s]	Wärmestrom [MW]	Betriebsstunden [h/a]	NO _x [kg/s]	NO ₂ [%]	NH ₃ [kg/s]
Q1-1	Qflex Route 1 punt 1	2555799	5926124	35	0,5	0,30	10	0,10	0,599	8760	0,000006	5	<u>-</u>
Q1-2	Qflex Route 1 punt 2	2555788	5926050	35	0,5	0,30	10	0,10	0,599	8760	0,000006	5	-
Q1-3	Qflex Route 1 punt 3	2555778	5925975	35	0,5	0,30	10	0,10	0,599	8760	0,000006	5	-
Q1-4	Offex Route 1 punt 4	2555769	5925901	35	0,5	0,30	10	0,10	0,599	8760	0,000006	5	-
Q1-5 Q1-6	Qflex Route 1 punt 5 Qflex Route 1 punt 6	2555759 2555750	5925827 5925753	35 35	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,599 0,599	8760 8760	0,000006 0,000006	5 5	-
Q1-7	Qflex Route 1 punt 7	2555739	5925679	35	0,5	0,30	10	0,10	0,599	8760	0,000006	5	_
Q1-8	Qflex Route 1 punt 8	2555729	5925604	35	0,5	0,30	10	0,10	0,599	8760	0,000006	5	_
Q1-9	Qflex Route 1 punt 9	2555720	5925531	35	0,5	0,30	10	0,10	0,599	8760	0,000006	5	-
Q1-10	Qflex Route 1 punt 10	2555710	5925457	35	0,5	0,30	10	0,10	0,599	8760	0,000006	5	-
Q2-1	Qflex Route 2 punt 1	2555715	5925294	35	0,5	0,30	10	0,10	0,712	8760	0,000002	5	-
Q2-2 Q2-3	Qflex Route 2 punt 2	2555726	5926638	35 35	0,5 0,5	0,30 0,30	10 10	0,10	0,712 0,712	8760 8760	0,000002	5 5	-
Q2-3 Q2-4	Qflex Route 2 punt 3 Qflex Route 2 punt 4	2555704 2555681	5926972 5927342	35 35	0,5	0,30	10	0,10 0,10	0,712	8760	0,000002 0,000002	5 5	-
Q2-5	Qflex Route 2 punt 5	2555532	5927778	35	0,5	0,30	10	0,10	0,712	8760	0,000002	5	_
Q2-6	Qflex Route 2 punt 6	2555355	5928074	35	0,5	0,30	10	0,10	0,712	8760	0,000002	5	-
Q2-7	Qflex Route 2 punt 7	2555090	5928421	35	0,5	0,30	10	0,10	0,712	8760	0,000002	5	-
Q2-8	Qflex Route 2 punt 8	2554785	5928666	35	0,5	0,30	10	0,10	0,712	8760	0,000002	5	-
Q2-9 Q2-10	Offex Route 2 punt 9	2554507 2554164	5928988 5929298	35 35	0,5 0,5	0,30 0,30	10 10	0,10	0,712 0,712	8760 8760	0,000002 0,000002	5 5	-
Q2-10 Q2-11	Qflex Route 2 punt 10 Qflex Route 2 punt 11	2553899	5929594	35	0,5	0,30	10	0,10 0,10	0,712	8760	0,000002	5	-
Q2-12	Qflex Route 2 punt 12	2553518	5929942	35	0,5	0,30	10	0,10	0,712	8760	0,000002	5	_
Q2-13	Qflex Route 2 punt 13	2553226	5930238	35	0,5	0,30	10	0,10	0,712	8760	0,000002	5	-
Q2-14	Qflex Route 2 punt 14	2552910	5930573	35	0,5	0,30	10	0,10	0,712	8760	0,000002	5	-
Q2-15	Qflex Route 2 punt 15	2552122	5931168	35	0,5	0,30	10	0,10	0,712	8760	0,000002	5	-
Q2-16	Qflex Route 2 punt 16	2551729	5931465	35	0,5	0,30	10	0,10	0,712	8760	0,000002	5	-
Q2-17 Q2-18	Qflex Route 2 punt 17 Qflex Route 2 punt 18	2552555 2551322	5930895 5931774	35 35	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,712 0,712	8760 8760	0,000002 0,000002	5 5	-
Q2-10 Q2-19	Qflex Route 2 punt 19	2550955	5932046	35	0,5	0,30	10	0,10	0,712	8760	0,000002	5	_
Q2-20	Qflex Route 2 punt 20	2550612	5932279	35	0,5	0,30	10	0,10	0,712	8760	0,000002	5	-
Q2-21	Qflex Route 2 punt 21	2550256	5932563	35	0,5	0,30	10	0,10	0,712	8760	0,000002	5	-
Q3-1	Q-flex route 3 punt 1	2545017	5936425	35	0,5	0,30	10	0,10	1,113	8760	0,000026	5	-
Q3-2 Q3-3	Q-flex route 3 punt 2 Q-flex route 3 punt 3	2545358 2545700	5936174 5935923	35 35	0,5 0,5	0,30 0,30	10 10	0,10 0,10	1,113 1,113	8760 8760	0,000026 0,000026	5 5	-
Q3-4	Q-flex route 3 punt 4	2546040	5935672	35	0,5	0,30	10	0,10	1,113	8760	0,000026	5	_
Q3-5	Q-flex route 3 punt 5	2546382	5935421	35	0,5	0,30	10	0,10	1,113	8760	0,000026	5	_
Q3-6	Q-flex route 3 punt 6	2546723	5935169	35	0,5	0,30	10	0,10	1,113	8760	0,000026	5	-
Q3-7	Q-flex route 3 punt 7	2547064	5934918	35	0,5	0,30	10	0,10	1,113	8760	0,000026	5	-
Q3-8 Q3-9	Q-flex route 3 punt 8	2547406 2547747	5934666	35 35	0,5 0,5	0,30 0,30	10 10	0,10	1,113 1,113	8760 8760	0,000026	5 5	-
Q3-9 Q3-10	Q-flex route 3 punt 9 Q-flex route 3 punt 10	2547747 2548088	5934415 5934163	35	0,5	0,30	10	0,10 0,10	1,113	8760	0,000026 0,000026	5 5	-
Q3-10 Q3-11	Q-flex route 3 punt 10	2548430	5933913	35	0,5	0,30	10	0,10	1,113	8760	0,000026	5	_
Q3-12	Q-flex route 3 punt 12	2548770	5933662	35	0,5	0,30	10	0,10	1,113	8760	0,000026	5	-
Q3-13	Q-flex route 3 punt 13	2549112	5933410	35	0,5	0,30	10	0,10	1,113	8760	0,000026	5	-
Q3-14	Q-flex route 3 punt 14	2549453	5933159	35	0,5	0,30	10	0,10	1,113	8760	0,000026	5	-
Q3-15 Q4-1	Q-flex route 3 punt 15 Q-flex route 4 punt 1	2549764 2544592	5932907 5936732	35 35	0,5 0,5	0,30	10 10	0,10 0,10	1,113 1,603	8760 8760	0,000026	5 5	÷
Q4-1 Q4-2	Q-flex route 4 punt 2	2544099	5937082	35	0,5	0,30	10	0,10	1,603	8760	0,000040	5	_
Q4-3	Q-flex route 4 punt 3	2543607	5937433	35	0,5	0,30	10	0,10	1,603	8760	0,000040	5	-
Q4-4	Q-flex route 4 punt 4	2543114	5937783	35	0,5	0,30	10	0,10	1,603	8760	0,000040	5	-
Q4-5	Q-flex route 4 punt 5	2542622	5938133	35	0,5	0,30	10	0,10	1,603	8760	0,000040	5	-
Q4-6	Q-flex route 4 punt 6	2542129	5938485	35	0,5	0,30	10	0,10	1,603	8760	0,000040 0,000040	5	-
Q4-7 Q4-8	Q-flex route 4 punt 7 Q-flex route 4 punt 8	2541637 2541144	5938835 5939185	35 35	0,5 0,5	0,30 0,30	10 10	0,10 0,10	1,603 1,603	8760 8760	0,000040	5 5	-
Q4-9	Q-flex route 4 punt 9	2540652	5939536	35	0,5	0,30	10	0,10	1,603	8760	0,000040	5	_
Q4-10	Q-flex route 4 punt 10	2540159	5939886	35	0,5	0,30	10	0,10	1,603	8760	0,000040	5	-
Q4-11	Q-flex route 4 punt 11	2539666	5940236	35	0,5	0,30	10	0,10	1,603	8760	0,000040	5	-
Q4-12	Q-flex route 4 punt 12	2539174	5940587	35	0,5	0,30	10	0,10	1,603	8760	0,000040	5	-
Q4-13 Q4-14	Q-flex route 4 punt 13	2538681	5940937	35 35	0,5	0,30	10	0,10	1,603	8760 8760	0,000040	5	-
Q4-14 Q4-15	Q-flex route 4 punt 14 Q-flex route 4 punt 15	2538189 2537696	5941289 5941639	35 35	0,5 0,5	0,30 0,30	10 10	0,10 0,10	1,603 1,603	8760 8760	0,000040 0,000040	5 5	-
- IJ	& nex route + punt 13	2331030	3371033	33	0,5	0,50	10	0,10	1,003	0,00	5,000040	J	

P:\zmn\85\85636\M85636_01_BER_11D.DOC:16. 01. 2012

Tabelle 19 (Fortsetzung). Stickstoffoxid- und Ammoniakemissionsquellen der Fahrrinne Eemshaven-Nordzee mit Emissionsrandbedingungen (nach [20])

Quellen			Koordinaten (Gauss-Krüger)		Ableitbe- dingungen		Emis	ssionspa		Emissionen		
ž	Beschreibung	Rechtswert [m]	Hochwert [m]	Schornsteinhöhe [m]	innendurchmesser [m]	Abgasgeschindigkeit [m/s]	Abgastemperatur [°C]	Abgasvolumen [m³/s]	Wärmestrom [MW]	Betriebsstunden [h/a]	NO _x [kg/s]	NO ₂ [%] NH ₃ [kg/s]
Q4-16	Q-flex route 4 punt 16	2537204	5941989	35	0,5	0,30	10	0,10	1,603	8760	0,000040	5 -
Q4-17	Q-flex route 4 punt 17	2536473	5942510	35	0,5	0,30	10	0,10	1,603	8760	0,000040	5 -
Q4-18 Q4-19	Q-flex route 4 punt 18 Q-flex route 4 punt 19	2536172	5942516	35 35	0,5	0,30 0,30	10 10	0,10	1,603	8760	0,000040	5 - 5 -
Q4-19 Q4-20	Q-flex route 4 punt 20	2535570 2534968	5942529 5942542	35	0,5 0,5	0,30	10	0,10 0,10	1,603 1,603	8760 8760	0,000040 0,000040	5 -
Q4-21	Q-flex route 4 punt 21	2534367	5942554	35	0,5	0,30	10	0,10	1,603	8760	0,000040	5 -
Q4-22	Q-flex route 4 punt 22	2533765	5942567	35	0,5	0,30	10	0,10	1,603	8760	0,000040	5 -
Q4-23	Q-flex route 4 punt 23	2533163	5942579	35	0,5	0,30	10	0,10	1,603	8760	0,000040	5 -
Q4-24 Q4-25	Q-flex route 4 punt 24 Q-flex route 4 punt 25	2532562 2531961	5942592 5942605	35 35	0,5 0,5	0,30 0,30	10 10	0,10 0,10	1,603 1,603	8760 8760	0,000040 0,000040	5 - 5 -
Q5-1	Q-flex route 5 punt 1	2521545	5942517	35	0,5	0,30	10	0,10	1,603	8760	0,000029	5 -
Q5-2	Q-flex route 5 punt 2	2522056	5942523	35	0,5	0,30	10	0,10	1,603	8760	0,000029	5 -
Q5-3	Q-flex route 5 punt 3	2522566	5942528	35	0,5	0,30	10	0,10	1,603	8760	0,000029	5 -
Q5-4	Q-flex route 5 punt 4	2523077	5942533	35	0,5	0,30	10	0,10	1,603	8760	0,000029 0,000029	5 - 5 -
Q5-5 Q5-6	Q-flex route 5 punt 5 Q-flex route 5 punt 6	2523587 2524098	5942538 5942543	35 35	0,5 0,5	0,30 0,30	10 10	0,10 0,10	1,603 1,603	8760 8760	0,000029	5 - 5 -
Q5-7	Q-flex route 5 punt 7	2524608	5942548	35	0,5	0,30	10	0,10	1,603	8760	0,000029	5 -
Q5-8	Q-flex route 5 punt 8	2525118	5942553	35	0,5	0,30	10	0,10	1,603	8760	0,000029	5 -
Q5-9	Q-flex route 5 punt 9	2525629	5942558	35	0,5	0,30	10	0,10	1,603	8760	0,000029	5 -
Q5-10 Q5-11	Q-flex route 5 punt 10 Q-flex route 5 punt 11	2526139 2525650	5942563 5942577	35 35	0,5 0,5	0,30 0,30	10 10	0,10 0,10	1,603 1,603	8760 8760	0,000029 0,000029	5 - 5 -
Q5-12	Q-flex route 5 punt 12	2527160	5942573	35	0,5	0,30	10	0,10	1,603	8760	0,000029	5 -
Q5-13	Q-flex route 5 punt 13	2527671	5942579	35	0,5	0,30	10	0,10	1,603	8760	0,000029	5 -
Q5-14	Q-flex route 5 punt 14	2528181	5942583	35	0,5	0,30	10	0,10	1,603	8760	0,000029	5 -
Q5-15 Q5-16	Q-flex route 5 punt 15	2528692 2529202	5942588 5942594	35 35	0,5 0,5	0,30 0,30	10 10	0,10	1,603 1,603	8760 8760	0,000029	5 - 5 -
Q5-16 Q5-17	Q-flex route 5 punt 16 Q-flex route 5 punt 17	2529202	5942594	35	0,5	0,30	10	0,10 0,10	1,603	8760	0,000029 0,000029	5 -
Q5-18	Q-flex route 5 punt 18	2530223	5942603	35	0,5	0,30	10	0,10	1,603	8760	0,000029	5 -
Q5-19	Q-flex route 5 punt 19	2530733	5942609	35	0,5	0,30	10	0,10	1,603	8760	0,000029	5 -
Q5-20	Q-flex route 5 punt 20	2531244	5942613	35 35	0,5	0,30	10 10	0,10	1,603	8760	0,000029	5 - 5 -
Q61i-1 Q61i-2	Q-flex route 6.1_in punt 1 Q-flex route 6.1_in punt 2	2521410 2521652	5943179 5944504	35 35	0,5 0,5	0,30 0,30	10	0,10 0,10	7,524 7,524	8760 8760	0,000063 0,000063	5 - 5 -
Q61i-3	Q-flex route 6.1_in punt 3	2521892	5945831	35	0,5	0,30	10	0,10	7,524	8760	0,000063	5 -
Q61i-4	Q-flex route 6.1_in punt 4	2522133	5947157	35	0,5	0,30	10	0,10	7,524	8760	0,000063	5 -
Q61i-5	Q-flex route 6.1_in punt 5	2522373	5948483	35	0,5	0,30	10	0,10	7,524	8760	0,000063	5 -
Q61i-6 Q61i-7	Q-flex route 6.1_in punt 6 Q-flex route 6.1_in punt 7	2522614 2522856	5949810 5951136	35 35	0,5 0,5	0,30 0,30	10 10	0,10 0,10	7,524 7,524	8760 8760	0,000063 0,000063	5 - 5 -
Q61i-8	Q-flex route 6.1 in punt 8	2523096	5952463	35	0,5	0,30	10	0,10	7,524	8760	0,000063	5 -
Q61i-9	Q-flex route 6.1_in punt 9	2523337	5953788	35	0,5	0,30	10	0,10	7,524	8760	0,000063	5 -
Q61i-10	Q-flex route 6.1_in punt 10	2523458	5954451	35	0,5	0,30	10	0,10	7,524	8760	0,000063	5 -
Q61i-11 Q61i-12	Q-flex route 6.1_in punt 11 Q-flex route 6.1_in punt 12	2523467 2523477	5955573 5956695	35 35	0,5 0,5	0,30 0,30	10 10	0,10 0,10	7,524 7,524	8760 8760	0,000063 0,000063	5 - 5 -
Q61u-1	Q-flex route 6.1_uit punt 1	2521680	5943545	35	0,5	0,30	10	0,10	7,524	8760	0,000003	5 -
Q61u-2	Q-flex route 6.1_uit punt 2	2522460	5945604	35	0,5	0,30	10	0,10	7,524	8760	0,000104	5 -
Q61u-3	Q-flex route 6.1_uit punt 3	2523240	5947665	35	0,5	0,30	10	0,10	7,524	8760	0,000104	5 -
Q61u-4 Q61u-5	Q-flex route 6.1_uit punt 4	2524020	5949724	35 35	0,5 0,5	0,30	10	0,10	7,524 7,524	8760	0,000104 0,000104	5 - 5 -
Q61u-5 Q61u-6	Q-flex route 6.1_uit punt 5 Q-flex route 6.1_uit punt 6	2524800 2525579	5951783 5953843	35	0,5	0,30 0,30	10 10	0,10 0,10	7,524	8760 8760	0,000104	5 -
Q61u-7	Q-flex route 6.1_uit punt 7	2525916	5955845	35	0,5	0,30	10	0,10	7,524	8760	0,000104	5 -
Q61u-8	Q-flex route 6.1_uit punt 8	2525810	5957789	35	0,5	0,30	10	0,10	7,524	8760	0,000104	5 -
Q61u-9	Q-flex route 6.1_uit punt 9	2525703	5959733	35	0,5	0,30	10	0,10	7,524	8760	0,000104	5 -
Q61u-10 Q61u-11	Q-flex route 6.1_uit punt 10 Q-flex route 6.1_uit punt 11	2525597 2525490	5961678 5963621	35 35	0,5 0,5	0,30 0,30	10 10	0,10 0,10	7,524 7,524	8760 8760	0,000104 0,000104	5 - 5 -
Q61u-11		2525384	5965565	35	0,5	0,30	10	0,10	7,524	8760	0,000104	5 -
Q62i-1	Q-flex route 6.2_in punt 1	2523390	5958718	35	0,5	0,30	10	0,10	7,524	8760	0,000136	5 -
Q62i-2	Q-flex route 6.2_in punt 2	2523209	5961641	35	0,5	0,30	10	0,10	7,524	8760	0,000136	5 -
Q62i-3 Q62i-4	Q-flex route 6.2_in punt 3 Q-flex route 6.2_in punt 4	2523027 2522844	5964565 5967488	35 35	0,5 0,5	0,30 0,30	10 10	0,10 0,10	7,524 7,524	8760 8760	0,000136 0,000136	5 - 5 -
Q62i-4 Q62i-5	Q-flex route 6.2_in punt 4 Q-flex route 6.2_in punt 5	2522844 2522663	5967488	35 35	0,5 0,5	0,30	10	0,10	7,524 7,524	8760	0,000136	5 - 5 -
Q62i-6	Q-flex route 6.2_in punt 6	2522481	5973336	35	0,5	0,30	10	0,10	7,524	8760	0,000136	5 -
Q62i-7	Q-flex route 6.2_in punt 7	2522299	5976259	35	0,5	0,30	10	0,10	7,524	8760	0,000136	5 -

P:\zmn\85\85636\M85636_01_BER_11D.DOC:16. 01. 2012

Tabelle 19 (Fortsetzung). Stickstoffoxid- und Ammoniakemissionsquellen der Fahrrinne Eemshaven-Nordzee mit Emissionsrandbedingungen (nach [20])

	Quellen		linaten ·Krüger)		eitbe- ungen		Emis	ssionspa	rameter		Emissionen		
ž	Beschreibung	Rechtswert [m]	Hochwert [m]	Schornsteinhöhe [m]	Innendurchmesser [m]	Abgasgeschindigkeit [m/s]	Abgastemperatur [°C]	Abgasvolumen [m³/s]	Wärmestrom [MW]	Betriebsstunden [h/a]	NO _x [kg/s]	NO ₂ [%] NH ₃ [kg/s]	
Q62i-8	Q-flex route 6.2_in punt 8	2522118	5979183	35	0,5	0,30	10	0,10	7,524	8760	0,000136	5 -	
Q62i-9	Q-flex route 6.2_in punt 9	2521936	5982106	35	0,5	0,30	10	0,10	7,524	8760	0,000136	5 -	
Q62i-10	Q-flex route 6.2_in punt 10	2521754	5985030	35	0,5	0,30	10	0,10	7,524	8760	0,000136	5 -	
Q62i-11	Q-flex route 6.2_in punt 11	2521572	5987953	35	0,5	0,30	10	0,10	7,524	8760	0,000136	5 -	
Q62i-12 Q62i-13	Q-flex route 6.2_in punt 12 Q-flex route 6.2_in punt 13	2521390 2521209	5990876 5993800	35 35	0,5 0,5	0,30 0,30	10 10	0,10 0,10	7,524 7,524	8760 8760	0,000136 0,000136	5 - 5 -	
Q62i-13	Q-flex route 6.2_in punt 14	2521203	5996723	35	0,5	0,30	10	0,10	7,524	8760	0,000136	5 -	
Q62i-15	Q-flex route 6.2_in punt 15	2520845	5999647	35	0,5	0,30	10	0,10	7,524	8760	0,000136	5 -	
Q62u-1	Q-flex route 6.2_uit punt 1	2525253	5968223	35	0,5	0,30	10	0,10	7,524	8760	0,000169	5 -	
Q62u-2	Q-flex route 6.2_uit punt 2	2525097	5971594	35	0,5	0,30	10	0,10	7,524	8760	0,000169	5 -	
Q62u-3 Q62u-4	Q-flex route 6.2_uit punt 3	2524942 2524785	5974965 5978336	35 35	0,5 0,5	0,30 0,30	10 10	0,10 0,10	7,524 7,524	8760 8760	0,000169 0,000169	5 - 5 -	
262u-4 262u-5	Q-flex route 6.2_uit punt 4 Q-flex route 6.2_uit punt 5	2524630	5981707	35	0,5	0,30	10	0,10	7,524	8760	0,000169	5 -	
Q62u-6	Q-flex route 6.2_uit punt 6	2524473	5985078	35	0,5	0,30	10	0,10	7,524	8760	0,000169	5 -	
Q62u-7	Q-flex route 6.2_uit punt 7	2524318	5988449	35	0,5	0,30	10	0,10	7,524	8760	0,000169	5 -	
Q62u-8	Q-flex route 6.2_uit punt 8	2524162	5991820	35	0,5	0,30	10	0,10	7,524	8760	0,000169	5 -	
Q62u-9 Q62u-10	Q-flex route 6.2_uit punt 9	2524006	5995190	35	0,5	0,30	10	0,10	7,524	8760	0,000169	5 - 5 -	
262u-10 262u-11	Q-flex route 6.2_uit punt 10 Q-flex route 6.2_uit punt 11	2523850 2523695	5998561 6001933	35 35	0,5 0,5	0,30 0,30	10 10	0,10 0,10	7,524 7,524	8760 8760	0,000169 0,000169	5 - 5 -	
Q62u-12	Q-flex route 6.2_uit punt 12	2523538	6005303	35	0,5	0,30	10	0,10	7,524	8760	0,000169	5 -	
P1-1	Panamax Route 1 punt 1	2555799	5926124	25	0,5	0,30	10	0,10	0,230	8760	0,000001	5 -	
21-2	Panamax Route 1 punt 2	2555788	5926050	25	0,5	0,30	10	0,10	0,230	8760	0,000001	5 -	
21-3	Panamax Route 1 punt 3	2555778	5925975	25	0,5	0,30	10	0,10	0,230	8760	0,000001	5 -	
P1-4 P1-5	Panamax Route 1 punt 4 Panamax Route 1 punt 5	2555769 2555759	5925901 5925827	25 25	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,230 0,230	8760 8760	0,000001 0,000001	5 - 5 -	
21-6	Panamax Route 1 punt 6	2555750	5925753	25	0,5	0,30	10	0,10	0,230	8760	0,000001	5 -	
21-7	Panamax Route 1 punt 7	2555739	5925679	25	0,5	0,30	10	0,10	0,230	8760	0,000001	5 -	
21-8	Panamax Route 1 punt 8	2555729	5925604	25	0,5	0,30	10	0,10	0,230	8760	0,000001	5 -	
P1-9	Panamax Route 1 punt 9	2555720	5925531	25	0,5	0,30	10	0,10	0,230	8760	0,000001	5 -	
P1-10 P2-1	Panamax Route 1 punt 10 Panamax Route 2 punt 1	2555710 2555715	5925457 5925294	25 25	0,5 0,5	0,30	10 10	0,10	0,230 0,285	8760 8760	0,000001	5 - 5 -	
P2-2	Panamax Route 2 punt 2	2555726	5926638	25	0,5	0,30	10	0,10	0,285	8760	0,000005	5 -	
2-3	Panamax Route 2 punt 3	2555704	5926972	25	0,5	0,30	10	0,10	0,285	8760	0,000005	5 -	
2-4	Panamax Route 2 punt 4	2555681	5927342	25	0,5	0,30	10	0,10	0,285	8760	0,000005	5 -	
2-5	Panamax Route 2 punt 5	2555532	5927778	25	0,5	0,30	10	0,10	0,285	8760	0,000005	5 -	
P2-6 P2-7	Panamax Route 2 punt 6 Panamax Route 2 punt 7	2555355 2555090	5928074 5928421	25 25	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,285 0,285	8760 8760	0,000005 0,000005	5 - 5 -	
2-7	Panamax Route 2 punt 8	2554785	5928666	25	0,5	0,30	10	0,10	0,285	8760	0,000005	5 -	
2-9	Panamax Route 2 punt 9	2554507	5928988	25	0,5	0,30	10	0,10	0,285	8760	0,000005	5 -	
P2-10	Panamax Route 2 punt 10	2554164	5929298	25	0,5	0,30	10	0,10	0,285	8760	0,000005	5 -	
22-11	Panamax Route 2 punt 11	2553899	5929594	25	0,5	0,30	10	0,10	0,285	8760	0,000005	5 -	
P2-12 P2-13	Panamax Route 2 punt 12 Panamax Route 2 punt 13	2553518 2553226	5929942 5930238	25 25	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,285 0,285	8760 8760	0,000005 0,000005	5 - 5 -	
P2-14	Panamax Route 2 punt 14	2552910	5930573	25	0,5	0,30	10	0,10	0,285	8760	0,000005	5 -	
2-15	Panamax Route 2 punt 15	2552122	5931168	25	0,5	0,30	10	0,10	0,285	8760	0,000005	5 -	
2-16	Panamax Route 2 punt 16	2551729	5931465	25	0,5	0,30	10	0,10	0,285	8760	0,000005	5 -	
P2-17	Panamax Route 2 punt 17	2552555	5930895	25	0,5	0,30	10	0,10	0,285	8760	0,000005	5 -	
P2-18 P2-19	Panamax Route 2 punt 18 Panamax Route 2 punt 19	2551322 2550955	5931774 5932046	25 25	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,285	8760 8760	0,000005 0,000005	5 - 5 -	
P2-19	Panamax Route 2 punt 19 Panamax Route 2 punt 20	2550955	5932046	25 25	0,5	0,30	10	0,10	0,285 0,285	8760	0,000005	5 - 5 -	
P2-21	Panamax Route 2 punt 20	2550256	5932563	25	0,5	0,30	10	0,10	0,285	8760	0,000005	5 -	
P3-1	Panamax route 3 punt 1	2545017	5936425	25	0,5	0,30	10	0,10	0,499	8760	0,000006	5 -	
23-2	Panamax route 3 punt 2	2545358	5936174	25	0,5	0,30	10	0,10	0,499	8760	0,000006	5 -	
23-3	Panamax route 3 punt 3	2545700	5935923	25	0,5	0,30	10	0,10	0,499	8760	0,000006	5 -	
23-4 23-5	Panamax route 3 punt 4 Panamax route 3 punt 5	2546040 2546382	5935672 5935421	25 25	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,499 0,499	8760 8760	0,000006 0,000006	5 - 5 -	
23-5 23-6	Panamax route 3 punt 6	2546723	5935169	25	0,5	0,30	10	0,10	0,499	8760	0,000006	5 -	
23-7	Panamax route 3 punt 7	2547064	5934918	25	0,5	0,30	10	0,10	0,499	8760	0,000006	5 -	
23-8	Panamax route 3 punt 8	2547406	5934666	25	0,5	0,30	10	0,10	0,499	8760	0,000006	5 -	
23-9	Panamax route 3 punt 9	2547747	5934415	25	0,5	0,30	10	0,10	0,499	8760	0,000006	5 -	
P3-10	Panamax route 3 punt 10	2548088	5934163	25	0,5	0,30	10	0,10	0,499	8760	0,000006	5 -	

P:\zmn\85\85636\M85636_01_BER_11D.DOC:16. 01. 2012

Tabelle 19 (Fortsetzung). Stickstoffoxid- und Ammoniakemissionsquellen der Fahrrinne Eemshaven-Nordzee mit Emissionsrandbedingungen (nach [20])

	Quellen		linaten -Krüger)	Able dingu			Emis	sionspa	rameter		Emissi	onen
ž	Beschreibung	Rechtswert [m]	Hochwert [m]	Schornsteinhöhe [m]	Innendurchmesser [m]	Abgasgeschindigkeit [m/s]	Abgastemperatur [°C]	Abgasvolumen [m³/s]	Wärmestrom [MW]	Betriebsstunden [h/a]	NO _x [kg/s]	NO ₂ [%] NH ₃ [kg/s]
P3-11	Panamax route 3 punt 11	2548430	5933913	25	0,5	0,30	10	0,10	0,499	8760	0,000006	5 -
P3-12	Panamax route 3 punt 12	2548770	5933662	25	0,5	0,30	10	0,10	0,499	8760	0,000006	5 -
P3-13	Panamax route 3 punt 13	2549112	5933410	25	0,5	0,30	10	0,10	0,499	8760	0,000006	5 -
P3-14 P3-15	Panamax route 3 punt 14 Panamax route 3 punt 15	2549453 2549764	5933159 5932907	25 25	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,499 0,499	8760 8760	0,000006 0,000006	5 - 5 -
P4-1	Panamax route 4 punt 1	2544592	5936732	25	0,5	0,30	10	0,10	0,786	8760	0,000011	5 -
P4-2	Panamax route 4 punt 2	2544099	5937082	25	0,5	0,30	10	0,10	0,786	8760	0,000011	5 -
P4-3	Panamax route 4 punt 3	2543607	5937433	25	0,5	0,30	10	0,10	0,786	8760	0,000011	5 -
P4-4	Panamax route 4 punt 4	2543114	5937783	25	0,5	0,30	10	0,10	0,786	8760	0,000011	5 -
P4-5 P4-6	Panamax route 4 punt 5	2542622 2542129	5938133 5938485	25 25	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,786 0,786	8760 8760	0,000011	5 - 5 -
P4-6 P4-7	Panamax route 4 punt 6 Panamax route 4 punt 7	2542129	5938835	25 25	0,5	0,30	10	0,10	0,786	8760	0,000011 0,000011	5 - 5 -
P4-8	Panamax route 4 punt 8	2541144	5939185	25	0,5	0,30	10	0,10	0,786	8760	0,000011	5 -
P4-9	Panamax route 4 punt 9	2540652	5939536	25	0,5	0,30	10	0,10	0,786	8760	0,000011	5 -
P4-10	Panamax route 4 punt 10	2540159	5939886	25	0,5	0,30	10	0,10	0,786	8760	0,000011	5 -
P4-11	Panamax route 4 punt 11	2539666	5940236	25	0,5	0,30	10	0,10	0,786	8760	0,000011	5 - 5 -
P4-12 P4-13	Panamax route 4 punt 12 Panamax route 4 punt 13	2539174 2538681	5940587 5940937	25 25	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,786 0,786	8760 8760	0,000011 0,000011	5 - 5 -
P4-14	Panamax route 4 punt 14	2538189	5941289	25	0,5	0,30	10	0,10	0,786	8760	0,000011	5 -
P4-15	Panamax route 4 punt 15	2537696	5941639	25	0,5	0,30	10	0,10	0,786	8760	0,000011	5 -
P4-16	Panamax route 4 punt 16	2537204	5941989	25	0,5	0,30	10	0,10	0,786	8760	0,000011	5 -
P4-17	Panamax route 4 punt 17	2536473	5942510	25	0,5	0,30	10	0,10	0,786	8760	0,000011	5 -
P4-18 P4-19	Panamax route 4 punt 18 Panamax route 4 punt 19	2536172 2535570	5942516 5942529	25 25	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,786 0,786	8760 8760	0,000011 0,000011	5 - 5 -
P4-19	Panamax route 4 punt 20	2534968	5942542	25	0,5	0,30	10	0,10	0,786	8760	0,000011	5 -
P4-21	Panamax route 4 punt 21	2534367	5942554	25	0,5	0,30	10	0,10	0,786	8760	0,000011	5 -
P4-22	Panamax route 4 punt 22	2533765	5942567	25	0,5	0,30	10	0,10	0,786	8760	0,000011	5 -
P4-23	Panamax route 4 punt 23	2533163	5942579	25	0,5	0,30	10	0,10	0,786	8760	0,000011	5 -
P4-24 P4-25	Panamax route 4 punt 24 Panamax route 4 punt 25	2532562 2531961	5942592 5942605	25 25	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,786 0,786	8760 8760	0,000011 0,000011	5 - 5 -
P5-1	Panamax route 5 punt 1	2521545	5942517	25	0,5	0,30	10	0,10	0,786	8760	0,0000011	5 -
P5-2	Panamax route 5 punt 2	2522056	5942523	25	0,5	0,30	10	0,10	0,786	8760	0,000008	5 -
P5-3	Panamax route 5 punt 3	2522566	5942528	25	0,5	0,30	10	0,10	0,786	8760	0,000008	5 -
P5-4	Panamax route 5 punt 4	2523077	5942533	25	0,5	0,30	10	0,10	0,786	8760	0,000008	5 -
P5-5 P5-6	Panamax route 5 punt 5 Panamax route 5 punt 6	2523587 2524098	5942538 5942543	25 25	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,786 0,786	8760 8760	0,000008 0,000008	5 - 5 -
P5-7	Panamax route 5 punt 7	2524608	5942548	25	0,5	0,30	10	0,10	0,786	8760	0,000008	5 -
P5-8	Panamax route 5 punt 8	2525118	5942553	25	0,5	0,30	10	0,10	0,786	8760	0,000008	5 -
P5-9	Panamax route 5 punt 9	2525629	5942558	25	0,5	0,30	10	0,10	0,786	8760	0,000008	5 -
P5-10	Panamax route 5 punt 10	2526139	5942563	25	0,5	0,30	10	0,10	0,786	8760	0,000008	5 -
P5-11 P5-12	Panamax route 5 punt 11 Panamax route 5 punt 12	2525650 2527160	5942577 5942573	25 25	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,786 0,786	8760 8760	0,000008 0,000008	5 - 5 -
P5-13	Panamax route 5 punt 13	2527671	5942579	25	0,5	0,30	10	0,10	0,786	8760	0,000008	5 -
P5-14	Panamax route 5 punt 14	2528181	5942583	25	0,5	0,30	10	0,10	0,786	8760	0,000008	5 -
P5-15	Panamax route 5 punt 15	2528692	5942588	25	0,5	0,30	10	0,10	0,786	8760	0,000008	5 -
P5-16	Panamax route 5 punt 16	2529202	5942594	25	0,5	0,30	10	0,10	0,786	8760	0,000008	5 -
P5-17 P5-18	Panamax route 5 punt 17 Panamax route 5 punt 18	2529712 2530223	5942598 5942603	25 25	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,786 0,786	8760 8760	0,000008 0,000008	5 - 5 -
P5-16 P5-19	Panamax route 5 punt 19	2530223	5942609	25 25	0,5	0,30	10	0,10	0,786	8760	0,000008	5 - 5 -
P5-20	Panamax route 5 punt 20	2531244	5942613	25	0,5	0,30	10	0,10	0,786	8760	0,000008	5 -
P61i-1	Panamax route 6.1in punt 1	2521410	5943179	25	0,5	0,30	10	0,10	2,373	8760	0,000016	5 -
P61i-2	Panamax route 6.1in punt 2	2521652	5944504	25	0,5	0,30	10	0,10	2,373	8760	0,000016	5 -
P61i-3 P61i-4	Panamax route 6.1in punt 3 Panamax route 6.1in punt 4	2521892	5945831 5947157	25 25	0,5 0,5	0,30	10 10	0,10 0,10	2,373	8760 8760	0,000016 0,000016	5 - 5 -
P611-4 P61i-5	Panamax route 6.1in punt 4 Panamax route 6.1in punt 5	2522133 2522373	5947157 5948483	25 25	0,5 0,5	0,30 0,30	10	0,10	2,373 2,373	8760 8760	0,000016	5 - 5 -
P61i-6	Panamax route 6.1in punt 6	2522614	5949810	25	0,5	0,30	10	0,10	2,373	8760	0,000016	5 -
P61i-7	Panamax route 6.1in punt 7	2522856	5951136	25	0,5	0,30	10	0,10	2,373	8760	0,000016	5 -
P61i-8	Panamax route 6.1in punt 8	2523096	5952463	25	0,5	0,30	10	0,10	2,373	8760	0,000016	5 -
P61i-9	Panamax route 6.1in punt 9	2523337	5953788	25	0,5	0,30	10	0,10	2,373	8760	0,000016	5 -
P61i-10	Panamax route 6.1in punt 10	2523458	5954451	25	0,5	0,30	10	0,10	2,373	8760	0,000016	5 -

P:\zmn\85\85636\M85636_01_BER_11D.DOC:16. 01. 2012

Tabelle 19 (Fortsetzung). Stickstoffoxid- und Ammoniakemissionsquellen der Fahrrinne Eemshaven-Nordzee mit Emissionsrandbedingungen (nach [20])

P61i-12 P61u-1	Beschreibung	t [m]		<u>-</u>	딛	[s/w]							
	Bes	Rechtswert [m]	Hochwert [m]	Schornsteinhöhe [m]	Innendurchmesser [m]	Abgasgeschindigkeit [m/s]	Abgastemperatur [°C]	Abgasvolumen [m³/s]	Wärmestrom [MW]	Betriebsstunden [h/a]	NO _x [kg/s]	NO ₂ [%]	NH ₃ [kg/s]
P61u-1	Panamax route 6.1in punt 12	2523477	5956695	25	0,5	0,30	10	0,10	2,373	8760	0,000016	5	-
	Panamax route 6.1uit punt 1	2521680	5943545	25	0,5	0,30	10	0,10	2,373	8760	0,000027	5	-
P61u-2 P61u-3	Panamax route 6.1uit punt 2 Panamax route 6.1uit punt 3	2522460 2523240	5945604 5947665	25 25	0,5 0,5	0,30 0,30	10 10	0,10 0,10	2,373 2,373	8760 8760	0,000027 0,000027	5 5	-
P61u-4	Panamax route 6.1uit punt 4	2524020	5949724	25	0,5	0,30	10	0,10	2,373	8760	0,000027	5	-
P61u-5	Panamax route 6.1uit punt 5	2524800	5951783	25	0,5	0,30	10	0,10	2,373	8760	0,000027	5	-
P61u-6	Panamax route 6.1uit punt 6	2525579	5953843	25	0,5	0,30	10	0,10	2,373	8760	0,000027	5	-
P61u-7	Panamax route 6.1uit punt 7	2525916	5955845	25	0,5	0,30	10	0,10	2,373	8760	0,000027	5	-
P61u-8 P61u-9	Panamax route 6.1uit punt 8	2525810 2525703	5957789 5959733	25 25	0,5 0,5	0,30 0,30	10 10	0,10	2,373 2,373	8760 8760	0,000027	5 5	-
P61u-10	Panamax route 6.1uit punt 9 Panamax route 6.1uit punt 10	2525703	5961678	25	0,5	0,30	10	0,10 0,10	2,373	8760	0,000027 0,000027	5	-
P61u-11	Panamax route 6.1uit punt 11	2525490	5963621	25	0,5	0,30	10	0,10	2,373	8760	0,000027	5	-
P61u-12	Panamax route 6.1uit punt 12	2525384	5965565	25	0,5	0,30	10	0,10	2,373	8760	0,000027	5	-
SQ1i-1	Sleepboot Qf route 1 in punt 1	2555799	5926124	8	0,5	0,30	10	0,10	1,500	8760	0,000027	5	-
SQ1i-2 SQ1i-3	Sleepboot Qf route 1 in punt 2	2555788	5926050	8	0,5	0,30	10 10	0,10	1,500 1,500	8760	0,000027	5 5	-
SQ1i-3	Sleepboot Qf route 1 in punt 3 Sleepboot Qf route 1 in punt 4	2555778 2555769	5925975 5925901	8 8	0,5 0,5	0,30 0,30	10	0,10 0,10	1,500	8760 8760	0,000027 0,000027	5	-
SQ1i-5	Sleepboot Qf route 1 in punt 5	2555759	5925827	8	0,5	0,30	10	0,10	1,500	8760	0,000027	5	_
SQ1i-6	Sleepboot Qf route 1 in punt 6	2555750	5925753	8	0,5	0,30	10	0,10	1,500	8760	0,000027	5	-
SQ1i-7	Sleepboot Qf route 1 in punt 7	2555739	5925679	8	0,5	0,30	10	0,10	1,500	8760	0,000027	5	-
SQ1i-8	Sleepboot Qf route 1 in punt 8	2555729	5925604	8	0,5	0,30	10	0,10	1,500	8760	0,000027	5	-
SQ1i-9 SQ1i-10	Sleepboot Qf route 1 in punt 9 Sleepboot Qf route 1 in punt 10	2555720 2555710	5925531 5925457	8 8	0,5 0,5	0,30 0,30	10 10	0,10 0,10	1,500 1,500	8760 8760	0,000027 0,000027	5 5	-
SQ2i-1	Sleepboot Qf route 2 in punt 1	2555715	5925294	8	0,5	0,30	10	0,10	0.375	8760	0,0000027	5	-
SQ2i-2	Sleepboot Qf route 2 in punt 2	2555726	5926638	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5	-
SQ2i-3	Sleepboot Qf route 2 in punt 3	2555704	5926972	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5	-
SQ2i-4	Sleepboot Qf route 2 in punt 4	2555681	5927342	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5	-
SQ2i-5 SQ2i-6	Sleepboot Qf route 2 in punt 5 Sleepboot Qf route 2 in punt 6	2555532 2555355	5927778 5928074	8 8	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,375 0,375	8760 8760	0,000003 0,000003	5 5	-
SQ2i-7	Sleepboot Qf route 2 in punt 7	2555090	5928421	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5	_
SQ2i-8	Sleepboot Qf route 2 in punt 8	2554785	5928666	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5	-
SQ2i-9	Sleepboot Qf route 2 in punt 9	2554507	5928988	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5	-
SQ2i-10	Sleepboot Qf route 2 in punt 10	2554164	5929298	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5	-
SQ2i-11 SQ2i-12	Sleepboot Qf route 2 in punt 11 Sleepboot Qf route 2 in punt 12	2553899 2553518	5929594 5929942	8 8	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,375 0,375	8760 8760	0,000003 0,000003	5 5	-
SQ2i-12	Sleepboot Qf route 2 in punt 13	2553226	5930238	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5	_
SQ2i-14	Sleepboot Qf route 2 in punt 14	2552910	5930573	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5	-
SQ2i-15	Sleepboot Qf route 2 in punt 15	2552122	5931168	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5	-
SQ2i-16	Sleepboot Qf route 2 in punt 16	2551729	5931465	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5	-
SQ2i-17 SQ2i-18	Sleepboot Qf route 2 in punt 17 Sleepboot Qf route 2 in punt 18	2552555 2551322	5930895 5931774	8 8	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,375 0,375	8760 8760	0,000003	5 5	-
SQ2i-10	Sleepboot Qf route 2 in punt 19	2550955	5932046	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5	-
SQ2i-20	Sleepboot Qf route 2 in punt 20	2550612	5932279	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5	-
SQ2i-21	Sleepboot Qf route 2 in punt 21	2550256	5932563	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5	-
SQ1u-1	Sleepboot Qf route 1 uit punt 1	2555799	5926124	8	0,5	0,30	10	0,10	1,500	8760	0,000014	5	-
SQ1u-2 SQ1u-3	Sleepboot Qf route 1 uit punt 2 Sleepboot Qf route 1 uit punt 3	2555788 2555778	5926050 5925975	8 8	0,5 0,5	0,30 0,30	10 10	0,10 0,10	1,500 1,500	8760 8760	0,000014 0,000014	5 5	-
SQ1u-4	Sleepboot Qf route 1 uit punt 3	2555769	5925901	8	0,5	0,30	10	0,10	1,500	8760	0,000014	5	-
SQ1u-5	Sleepboot Qf route 1 uit punt 5	2555759	5925827	8	0,5	0,30	10	0,10	1,500	8760	0,000014	5	-
SQ1u-6	Sleepboot Qf route 1 uit punt 6	2555750	5925753	8	0,5	0,30	10	0,10	1,500	8760	0,000014	5	-
SQ1u-7	Sleepboot Qf route 1 uit punt 7	2555739	5925679	8	0,5	0,30	10	0,10	1,500	8760	0,000014	5	-
SQ1u-8 SQ1u-9	Sleepboot Qf route 1 uit punt 8 Sleepboot Qf route 1 uit punt 9	2555729 2555720	5925604 5925531	8 8	0,5 0,5	0,30 0,30	10 10	0,10 0,10	1,500 1,500	8760 8760	0,000014 0,000014	5 5	-
SQ1u-10	Sleepboot Qf route 1 uit punt 10	2555720	5925351	8	0,5	0,30	10	0,10	1,500	8760	0,000014	5	-
SQ2u-1	Sleepboot Qf route 2 uit punt 1	2555715	5925294	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5	-
SQ2u-2	Sleepboot Qf route 2 uit punt 2	2555726	5926638	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5	-
SQ2u-3	Sleepboot Qf route 2 uit punt 3	2555704	5926972	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5	-
SQ2u-4 SQ2u-5	Sleepboot Qf route 2 uit punt 4 Sleepboot Qf route 2 uit punt 5	2555681 2555532	5927342 5927778	8 8	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,375 0,375	8760 8760	0,000003 0,000003	5 5	-
SQ2u-5 SQ2u-6	Sleepboot Qf route 2 uit punt 6	2555352	5928074	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5	-
SQ2u-7	Sleepboot Qf route 2 uit punt 7	2555090	5928421	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5	-

P:\zmn\85\85636\M85636_01_BER_11D.DOC:16. 01. 2012

Tabelle 19 (Fortsetzung). Stickstoffoxid- und Ammoniakemissionsquellen der Fahrrinne Eemshaven-Nordzee mit Emissionsrandbedingungen (nach [20])

	Quellen		inaten Krüger)		itbe- ingen		Emis	sionspa	rameter		Emissionen		
ž	Beschreibung	Rechtswert [m]	Hochwert [m]	Schornsteinhöhe [m]	Innendurchmesser [m]	Abgasgeschindigkeit [m/s]	Abgastemperatur [°C]	Abgasvolumen [m³/s]	Wärmestrom [MW]	Betriebsstunden [h/a]	NO _x [kg/s]	NO ₂ [%] NH ₃ [kg/s]	
SQ2u-8	Sleepboot Qf route 2 uit punt 8	2554785	5928666	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5 -	
SQ2u-9	Sleepboot Qf route 2 uit punt 9	2554507	5928988	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5 -	
SQ2u-10	Sleepboot Qf route 2 uit punt 10	2554164	5929298	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5 -	
SQ2u-11	Sleepboot Qf route 2 uit punt 11	2553899	5929594	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5 -	
SQ2u-12	Sleepboot Qf route 2 uit punt 12	2553518	5929942	8	0,5	0,30	10 10	0,10	0,375	8760	0,000003	5 - 5 -	
SQ2u-13 SQ2u-14	Sleepboot Qf route 2 uit punt 13 Sleepboot Qf route 2 uit punt 14	2553226 2552910	5930238 5930573	8 8	0,5 0,5	0,30 0,30	10	0,10 0,10	0,375 0,375	8760 8760	0,000003 0,000003	5 -	
SQ2u-14	Sleepboot Qf route 2 uit punt 15	2552122	5931168	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5 -	
SQ2u-16	Sleepboot Qf route 2 uit punt 16	2551729	5931465	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5 -	
SQ2u-17	Sleepboot Qf route 2 uit punt 17	2552555	5930895	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5 -	
SQ2u-18	Sleepboot Qf route 2 uit punt 18	2551322	5931774	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5 -	
SQ2u-19	Sleepboot Qf route 2 uit punt 19	2550955	5932046	8	0,5	0,30	10	0,10	0,375	8760	0,000003	5 -	
SQ2u-20 SQ2u-21	Sleepboot Qf route 2 uit punt 20	2550612 2550256	5932279	8 8	0,5 0,5	0,30	10 10	0,10 0,10	0,375	8760 8760	0,000003 0,000003	5 - 5 -	
SP1i-1	Sleepboot Qf route 2 uit punt 21 Sleepboot Pmax route 1 in punt 1	2555799	5932563 5926124	8	0,5	0,30	10	0,10	0,375 0,750	8760	0,000003	5 -	
SP1i-2	Sleepboot Pmax route 1 in punt 2	2555788	5926050	8	0,5	0,30	10	0,10	0,750	8760	0,000008	5 -	
SP1i-3	Sleepboot Pmax route 1 in punt 3	2555778	5925975	8	0,5	0,30	10	0,10	0,750	8760	0,000008	5 -	
SP1i-4	Sleepboot Pmax route 1 in punt 4	2555769	5925901	8	0,5	0,30	10	0,10	0,750	8760	0,000008	5 -	
SP1i-5	Sleepboot Pmax route 1 in punt 5	2555759	5925827	8	0,5	0,30	10	0,10	0,750	8760	0,000008	5 -	
SP1i-6	Sleepboot Pmax route 1 in punt 6	2555750	5925753	8	0,5	0,30	10	0,10	0,750	8760	0,000008	5 -	
SP1i-7 SP1i-8	Sleepboot Pmax route 1 in punt 7 Sleepboot Pmax route 1 in punt 8	2555739 2555729	5925679 5925604	8 8	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,750 0,750	8760 8760	0,000008 0,000008	5 - 5 -	
SP11-0	Sleepboot Pmax route 1 in punt 9	2555729	5925531	8	0,5	0,30	10	0,10	0,750	8760	0,000008	5 -	
SP1i-10	Sleepboot Pmax route 1 in punt 10	2555710	5925457	8	0,5	0,30	10	0,10	0,375	8760	0,000008	5 -	
SP2i-1	Sleepboot Pmax route 2 in punt 1	2555715	5925294	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5 -	
SP2i-2	Sleepboot Pmax route 2 in punt 2	2555726	5926638	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5 -	
SP2i-3	Sleepboot Pmax route 2 in punt 3	2555704	5926972	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5 -	
SP2i-4	Sleepboot Pmax route 2 in punt 4	2555681	5927342	8 8	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,375 0,375	8760 8760	0,000002	5 - 5 -	
SP2i-5 SP2i-6	Sleepboot Pmax route 2 in punt 5 Sleepboot Pmax route 2 in punt 6	2555532 2555355	5927778 5928074	8	0,5	0,30	10	0,10	0,375	8760	0,000002 0,000002	5 -	
SP2i-7	Sleepboot Pmax route 2 in punt 7	2555090	5928421	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5 -	
SP2i-8	Sleepboot Pmax route 2 in punt 8	2554785	5928666	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5 -	
SP2i-9	Sleepboot Pmax route 2 in punt 9	2554507	5928988	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5 -	
SP2i-10	Sleepboot Pmax route 2 in punt 10	2554164	5929298	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5 -	
SP2i-11	Sleepboot Pmax route 2 in punt 11	2553899	5929594	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5 -	
SP2i-12 SP2i-13	Sleepboot Pmax route 2 in punt 12 Sleepboot Pmax route 2 in punt 13	2553518 2553226	5929942 5930238	8 8	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,375 0,375	8760 8760	0,000002 0,000002	5 - 5 -	
SP2i-13	Sleepboot Pmax route 2 in punt 14	2552910	5930573	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5 -	
SP2i-15	Sleepboot Pmax route 2 in punt 15	2552122	5931168	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5 -	
SP2i-16	Sleepboot Pmax route 2 in punt 16	2551729	5931465	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5 -	
SP2i-17	Sleepboot Pmax route 2 in punt 17	2552555	5930895	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5 -	
SP2i-18	Sleepboot Pmax route 2 in punt 18	2551322	5931774	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5 -	
SP2i-19 SP2i-20	Sleepboot Pmax route 2 in punt 19 Sleepboot Pmax route 2 in punt 20	2550955 2550612	5932046 5932279	8 8	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,375 0,375	8760 8760	0,000002 0,000002	5 - 5 -	
SP2i-21	Sleepboot Pmax route 2 in punt 21	2550256	5932563	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5 -	
SP1u-1	Sleepboot Pmax route 1 uit punt 1	2555799	5926124	8	0,5	0,30	10	0,10	0,750	8760	0,000004	5 -	
SP1u-2	Sleepboot Pmax route 1 uit punt 2	2555788	5926050	8	0,5	0,30	10	0,10	0,750	8760	0,000004	5 -	
SP1u-3	Sleepboot Pmax route 1 uit punt 3	2555778	5925975	8	0,5	0,30	10	0,10	0,750	8760	0,000004	5 -	
SP1u-4	Sleepboot Pmax route 1 uit punt 4	2555769	5925901	8	0,5	0,30	10	0,10	0,750	8760	0,000004	5 -	
SP1u-5 SP1u-6	Sleepboot Pmax route 1 uit punt 5 Sleepboot Pmax route 1 uit punt 6	2555759 2555750	5925827 5925753	8 8	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,750 0,750	8760 8760	0,000004 0,000004	5 - 5 -	
SP1u-7	Sleepboot Pmax route 1 uit punt 7	2555739	5925679	8	0,5	0,30	10	0,10	0,750	8760	0,000004	5 -	
SP1u-8	Sleepboot Pmax route 1 uit punt 8	2555729	5925604	8	0,5	0,30	10	0,10	0,750	8760	0,000004	5 -	
SP1u-9	Sleepboot Pmax route 1 uit punt 9	2555720	5925531	8	0,5	0,30	10	0,10	0,750	8760	0,000004	5 -	
SP1u-10	Sleepboot Pmax route 1 uit punt 10	2555710	5925457	8	0,5	0,30	10	0,10	0,750	8760	0,000004	5 -	
SP2u-1	Sleepboot Pmax route 2 uit punt 1	2555715	5925294	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5 -	
SP2u-2 SP2u-3	Sleepboot Pmax route 2 uit punt 2 Sleepboot Pmax route 2 uit punt 3	2555726	5926638	8 g	0,5 0,5	0,30 0,30	10	0,10	0,375	8760 8760	0,000002 0,000002	5 - 5 -	
SP2u-3 SP2u-4	Sleepboot Pmax route 2 uit punt 3 Sleepboot Pmax route 2 uit punt 4	2555704 2555681	5926972 5927342	8 8	0,5 0,5	0,30	10 10	0,10 0,10	0,375 0,375	8760	0,000002	5 - 5 -	
SP2u-5	Sleepboot Pmax route 2 uit punt 5	2555532	5927778	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5 -	
SP2u-6	Sleepboot Pmax route 2 uit punt 6	2555355	5928074	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5 -	

P:\zmn\85\85636\M85636_01_BER_11D.DOC:16. 01. 2012

Tabelle 19 (Fortsetzung). Stickstoffoxid- und Ammoniakemissionsquellen der Fahrrinne Eemshaven-Nordzee mit Emissionsrandbedingungen (nach [20])

	Quellen		inaten Krüger)		itbe- ingen		Emis	sionspa	rameter		Emissi	onen
	Beschreibung	Rechtswert [m]	Hochwert [m]	Schornsteinhöhe [m]	Innendurchmesser [m]	Abgasgeschindigkeit [m/s]	Abgastemperatur [°C]	Abgasvolumen [m³/s]	Wärmestrom [MW]	Betriebsstunden [h/a]	NO _x [kg/s]	NO ₂ [%]
ž	8e8	Şec	<u>8</u>	ç	nne	√bg	√bg	\pg	٧ä	get.	Š	Ş:
SP1u-7	Sleepboot Pmax route 1 uit punt 7	2555739	5925679	8	0,5	0,30	10	0,10	0,750	8760	0,000004	5
SP1u-8	Sleepboot Pmax route 1 uit punt 8	2555729	5925604	8	0,5	0,30	10	0,10	0,750	8760	0,000004	5
SP1u-9	Sleepboot Pmax route 1 uit punt 9	2555720	5925531	8	0,5	0,30	10	0,10	0,750	8760	0,000004	5
SP1u-10	Sleepboot Pmax route 1 uit punt 10	2555710	5925457	8	0,5	0,30	10	0,10	0,750	8760	0,000004	5
SP2u-1	Sleepboot Pmax route 2 uit punt 1	2555715	5925294	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5
SP2u-2	Sleepboot Pmax route 2 uit punt 2	2555726	5926638	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5
SP2u-3 SP2u-4	Sleepboot Pmax route 2 uit punt 3 Sleepboot Pmax route 2 uit punt 4	2555704 2555681	5926972 5927342	8 8	0,5 0,5	0,30 0,30	10 10	0,10 0,10	0,375 0,375	8760 8760	0,000002 0,000002	5 5
SP2u-4 SP2u-5	Sleepboot Pmax route 2 uit punt 4 Sleepboot Pmax route 2 uit punt 5	2555532	5927778	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5
SP2u-6	Sleepboot Pmax route 2 uit punt 6	2555355	5928074	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5
SP2u-7	Sleepboot Pmax route 2 uit punt 7	2555090	5928421	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5
SP2u-8	Sleepboot Pmax route 2 uit punt 8	2554785	5928666	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5
SP2u-9	Sleepboot Pmax route 2 uit punt 9	2554507	5928988	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5
SP2u-10	Sleepboot Pmax route 2 uit punt 10	2554164	5929298	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5
SP2u-11	Sleepboot Pmax route 2 uit punt 11	2553899	5929594	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5
SP2u-12	Sleepboot Pmax route 2 uit punt 12	2553518	5929942	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5
SP2u-13 SP2u-14	Sleepboot Pmax route 2 uit punt 13 Sleepboot Pmax route 2 uit punt 14	2553226	5930238	8	0,5 0,5	0,30 0,30	10 10	0,10	0,375 0,375	8760 8760	0,000002 0,000002	5 5
SP2u-14 SP2u-15	Sleepboot Pmax route 2 uit punt 14 Sleepboot Pmax route 2 uit punt 15	2552910 2552122	5930573 5931168	8 8	0,5	0,30	10	0,10 0,10	0,375	8760	0,000002	5 5
SP2u-16	Sleepboot Pmax route 2 uit punt 16	2551729	5931465	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5
P2u-17	Sleepboot Pmax route 2 uit punt 17	2552555	5930895	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5
SP2u-18	Sleepboot Pmax route 2 uit punt 18	2551322	5931774	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5
SP2u-19	Sleepboot Pmax route 2 uit punt 19	2550955	5932046	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5
SP2u-20	Sleepboot Pmax route 2 uit punt 20	2550612	5932279	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5
SP2u-21	Sleepboot Pmax route 2 uit punt 21	2550256	5932563	8	0,5	0,30	10	0,10	0,375	8760	0,000002	5
/S-1	Vopak schepen	2555799	5926124	8	-	-	-	-	0,443	8760	0,000017	5
/S-2 /S-3	Vopak schopen	2555788 2555778	5926050 5925975	8 8	-	-	-	-	0,443 0,443	8760 8760	0,000017 0,000017	5 5
/S-3 /S-4	Vopak schepen Vopak schepen	2555776	5925975	8	-	-	-	-	0,443	8760	0,000017	5
/S-5	Vopak schepen	2555759	5925827	8	_	_	-	_	0,443	8760	0,000017	5
/S-6	Vopak schepen	2555750	5925753	8	-	-	-	-	0,443	8760	0,000017	5
/S-7	Vopak schepen	2555739	5925679	8	-	-	-	-	0,443	8760	0,000017	5
/S-8	Vopak schepen	2555729	5925604	8	-	-	-	-	0,443	8760	0,000017	5
/S-9	Vopak schepen	2555720	5925531	8	-	-	-	-	0,443	8760	0,000017	5
/S-10	Vopak schepen	2555710	5925457	8	-	-	-	-	0,443	8760	0,000017	5
/S-11	Vopak schepen	2555799	5926124	15	-	-	-	-	1,771	8760	0,000002	5
/S-12 /S-13	Vopak schepen Vopak schepen	2555788 2555778	5926050 5925975	15 15	-	-	-	-	1,771 1,771	8760 8760	0,000002 0,000002	5 5
/S-13 /S-14	Vopak schepen	2555769	5925901	15	- [-		-	1,771	8760	0,000002	5
/S-15	Vopak schepen	2555759	5925827	15	-	_		-	1,771	8760	0,000002	5
/S-16	Vopak schepen	2555750	5925753	15	-	-	-	-	1,771	8760	0,000002	5
'S-17	Vopak schepen	2555739	5925679	15	-	-	-	-	1,771	8760	0,000002	5
/S-18	Vopak schepen	2555729	5925604	15	-	-	-	-	1,771	8760	0,000002	5
'S-19	Vopak schepen	2555720	5925531	15	-	-	-	-	1,771	8760	0,000002	5
/S-20	Vopak schepen	2555710	5925457	15	-	-	-	-	1,771	8760	0,000002	5
/S-21	Vopak schepen	2555715	5925294	15	-	-	-	-	1,771	8760	0,000002	5
/S-22 /S-23	Vopak schepen Vopak schepen	2555726 2555704	5926638 5926972	15 15	-	-	-	-	1,771 1,771	8760 8760	0,000002 0,000002	5 5
'S-23	Vopak schepen	2555681	5927342	15	-	-		-	1,771	8760	0,000002	5
'S-25	Vopak schepen	2555532	5927778	15	_	_	_	_	1,771	8760	0,000002	5
S-26	Vopak schepen	2555355	5928074	15	-	-	-	-	1,771	8760	0,000002	5
S-27	Vopak schepen	2555090	5928421	15	-	-	-	-	1,771	8760	0,000002	5
S-28	Vopak schepen	2554785	5928666	15	-	-	-	-	1,771	8760	0,000002	5
S-29	Vopak schepen	2554507	5928988	15	-	-	-	-	1,771	8760	0,000002	5
'S-30	Vopak schepen	2554164	5929298	15	-	-	-	-	1,771	8760	0,000002	5
S-31	Vopak schepen Vopak schepen	2553899	5929594	15	-	-	-	-	1,771	8760	0,000002	5
	VODSK SCHONON	2553518	5929942	15	-	-	-	-	1,771	8760	0,000002	5
'S-32			E020220	15					4 774	0700	0.000000	_
/S-32 /S-33	Vopak schepen	2553226	5930238 5930573	15 15	-	-	-	-	1,771 1,771	8760 8760	0,000002	5 5
/S-32 /S-33 /S-34 /S-35			5930238 5930573 5931168	15 15 15	-	-	-	-	1,771 1,771 1,771	8760 8760 8760	0,000002 0,000002 0,000002	5 5 5

P:\zmn\85\85636\M85636_01_BER_11D.DOC:16. 01. 2012

Tabelle 19 (Fortsetzung). Stickstoffoxid- und Ammoniakemissionsquellen der Fahrrinne Eemshaven-Nordzee mit Emissionsrandbedingungen (nach [20])

	Quellen		inaten Krüger)	Able dingu			Emis	sionspa		Emissionen		
ż	Beschreibung	Rechtswert [m]	Hochwert [m]	Schornsteinhöhe [m]	nnendurchmesser [m]	Abgasgeschindigkeit [m/s]	Abgastemperatur [°C]	Abgasvolumen [m³/s]	Wärmestrom [MW]	Betriebsstunden [h/a]	NO _x [kg/s]	NO ₂ [%] NH ₃ [kg/s]
VS-37	Vopak schepen	2552555	5930895	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-38	Vopak schepen	2551322	5931774	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-39	Vopak schepen	2550955	5932046	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-40	Vopak schepen	2550612	5932279	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-41	Vopak schepen	2550256	5932563	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-42	Vopak schepen	2545017	5936425	15	-	-	-	-	1,771	8760	0,000002	5 - 5 -
VS-43 VS-44	Vopak schepen Vopak schepen	2545358 2545700	5936174 5935923	15 15	-	-	-	-	1,771 1,771	8760 8760	0,000002 0,000002	5 - 5 -
VS-44 VS-45	Vopak schepen	2546040	5935672	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-46	Vopak schepen	2546382	5935421	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-47	Vopak schepen	2546723	5935169	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-48	Vopak schepen	2547064	5934918	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-49	Vopak schepen	2547406	5934666	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-50	Vopak schepen	2547747	5934415	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-51	Vopak schepen	2548088	5934163	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-52	Vopak schepen	2548430	5933913	15	-	-	-	-	1,771	8760	0,000002	5 - 5 -
VS-53 VS-54	Vopak schepen Vopak schepen	2548770 2549112	5933662 5933410	15 15	-	-	-	-	1,771 1,771	8760 8760	0,000002 0,000002	5 - 5 -
VS-54 VS-55	Vopak schepen	2549453	5933410	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-56	Vopak schepen	2549764	5932907	15	_	-	_	-	1,771	8760	0,000002	5 -
VS-57	Vopak schepen	2544592	5936732	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-58	Vopak schepen	2544099	5937082	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-59	Vopak schepen	2543607	5937433	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-60	Vopak schepen	2543114	5937783	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-61	Vopak schepen	2542622	5938133	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-62	Vopak schepen	2542129	5938485	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-63 VS-64	Vopak schepen Vopak schepen	2541637 2541144	5938835 5939185	15 15	-	-	-	-	1,771 1,771	8760 8760	0,000002 0,000002	5 - 5 -
VS-65	Vopak schepen	2540652	5939536	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-66	Vopak schepen	2540159	5939886	15	_	-	_	-	1,771	8760	0,000002	5 -
VS-67	Vopak schepen	2539666	5940236	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-68	Vopak schepen	2539174	5940587	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-69	Vopak schepen	2538681	5940937	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-70	Vopak schepen	2538189	5941289	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-71	Vopak schepen	2537696	5941639	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-72	Vopak schepen	2537204	5941989	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-73 VS-74	Vopak schepen Vopak schepen	2536473 2536172	5942510 5942516	15 15	-	-	-	-	1,771 1,771	8760 8760	0,000002 0,000002	5 - 5 -
VS-74	Vopak schepen	2535570	5942529	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-76	Vopak schepen	2534968	5942542	15	_	-	_	-	1,771	8760	0,000002	5 -
VS-77	Vopak schepen	2534367	5942554	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-78	Vopak schepen	2533765	5942567	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-79	Vopak schepen	2533163	5942579	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-80	Vopak schepen	2532562	5942592	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-81	Vopak schepen	2531961	5942605	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-82 VS-83	Vopak schepen Vopak schepen	2531325 2530977	5942618 5942621	15 15	-	-	-	-	1,771 1,771	8760 8760	0,000002 0,000002	5 - 5 -
VS-84	Vopak schepen	2530629	5942624	15	_	_	-	-	1,771	8760	0,000002	5 -
VS-85	Vopak schepen	2530281	5942627	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-86	Vopak schepen	2529933	5942630	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-87	Vopak schepen	2529585	5942633	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-88	Vopak schepen	2529237	5942637	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-89	Vopak schepen	2528889	5942640	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-90	Vopak schepen	2528540	5942643	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-91 VS-92	Vopak schepen Vopak schepen	2528192 2527844	5942646 5942650	15 15	-	-	-	-	1,771 1,771	8760 8760	0,000002 0,000002	5 - 5 -
VS-92 VS-93	Vopak schepen Vopak schepen	2527844 2527496	5942653	15	-	-	-	-	1,771	8760	0,000002	5 - 5 -
VS-93 VS-94	Vopak schepen	2527148	5942656	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-95	Vopak schepen	2526801	5942659	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-96	Vopak schepen	2526453	5942663	15	-	-	-	-	1,771	8760	0,000002	5 -
VS-97	Vopak schepen	2526105	5942666	15	-	_	-	-	1,771	8760	0,000002	5 -

P:\zmn\85\85636\M85636_01_BER_11D.DOC:16. 01. 2012

Tabelle 19 (Fortsetzung). Stickstoffoxid- und Ammoniakemissionsquellen der Fahrrinne Eemshaven-Nordzee mit Emissionsrandbedingungen (nach [20])

Fig. Fig.	Quellen			inaten Krüger)		itbe- ingen		Emis	sionspa		Emissionen			
VS-98 Vopak schepen 2525757 5942670 15 - - 1,771 8760 0,000002 5 VS-99 Vopak schepen 2525409 5942673 15 - - 1,771 8760 0,000002 5 VS-100 Vopak schepen 2525401 5942679 15 - - 1,771 8760 0,000002 5 VS-101 Vopak schepen 2556689 5926897 10 - 0,443 8760 0,000001 5 VS-103 Vopak schepen 25566899 5926897 10 - 0,443 8760 0,000001 5 VS-104 Vopak schepen 255717 5925898 10 - - 0,443 8760 0,00001 5 VS-104 Vopak schepen 255717 5925898 10 - - 0,443 8760 0,00001 5 VS-104 Vopak schepen 2559365 5925315 10 - 0,443						_	[w/s]							
VS-99 Vopak schepen 2525409 5942673 15 - - 1,771 8760 0,000002 5 VS-101 Vopak schepen 2525061 5942676 15 - - 1,771 8760 0,000002 5 VS-101 Vopak schepen 2556289 5926897 16 - - 0,443 8760 0,000001 5 VS-103 Vopak schepen 2556289 5926887 10 - - 0,443 8760 0,000001 5 VS-104 Vopak schepen 2557108 592678 10 - - 0,443 8760 0,00001 5 VS-105 Vopak schepen 2557175 5925680 10 - - 0,443 8760 0,00001 5 VS-108 Vopak schepen 2558745 5925041 10 - - 0,443 8760 0,00001 5 VS-110 Vopak schepen 2559564 5924722 10 <th< th=""><th></th><th></th><th></th><th></th><th></th><th>Innendurchmesser [m</th><th>Abgasgeschindigkeit</th><th>Abgastemperatur [°C]</th><th>Abgasvolumen [m³/s]</th><th></th><th></th><th></th><th></th><th>NH₃ [kg/s]</th></th<>						Innendurchmesser [m	Abgasgeschindigkeit	Abgastemperatur [°C]	Abgasvolumen [m³/s]					NH ₃ [kg/s]
VS-100 Vopak schepen						-	-							-
VS-101 Vopak schepen						-	-	-	-					-
VS-102 Vopak schepen						-	-	-	-	,				-
VS-103 Vopak schepen						-	-	-	-					-
VS-104 Vopak schepen						-	-	-	-					-
VS-105 Vopak schepen						-	-	-	-					-
VS-106 Vopak schepen						-	-	-						-
VS-107 Vopak schepen						-	-	-	-					-
VS-108 Vopak schepen						-	-	-	-					-
VS-109 Vopak schepen 2559155 5924732 10 - - - 0,443 8760 0,000001 5 VS-110 Vopak schepen 2559564 5924422 10 - - - 0,443 8760 0,000001 5 VS-111 Vopak schepen 2569891 5924033 10 - - 0,443 8760 0,000001 5 VS-113 Vopak schepen 2560186 5923195 10 - - 0,443 8760 0,000001 5 VS-114 Vopak schepen 2560776 5922774 10 - - 0,443 8760 0,000001 5 VS-114 Vopak schepen 2561072 5922355 10 - - 0,443 8760 0,000001 5 VS-118 Vopak schepen 2561866 5921935 10 - - 0,443 8760 0,000001 5 VS-112 Vopak schepen 2561956 5						-	-	-						-
						-	-	-						-
						-	-	-						-
						-	-	-						-
/S-113 Vopak schepen 2560482 5923195 10 - - - 0,443 8760 0,000001 5 /S-114 Vopak schepen 2560776 5922774 10 - - - 0,443 8760 0,000001 5 /S-115 Vopak schepen 2561072 5922355 10 - - - 0,443 8760 0,000001 5 /S-116 Vopak schepen 2561662 5921935 10 - - - 0,443 8760 0,000001 5 /S-118 Vopak schepen 2561956 5921095 10 - - - 0,443 8760 0,000001 5 /S-119 Vopak schepen 2562252 5920676 10 - - - 0,443 8760 0,000001 5 /S-121 Vopak schepen 256246 5920255 10 - - - 0,443 8760 0,000001 5						-	-	-	-	-,				-
/S-114 Vopak schepen 2560776 5922774 10 - - - 0,443 8760 0,00001 5 /S-115 Vopak schepen 2561072 5922355 10 - - - 0,443 8760 0,000001 5 /S-116 Vopak schepen 2561666 5921935 10 - - - 0,443 8760 0,000001 5 /S-118 Vopak schepen 2561956 5921095 10 - - - 0,443 8760 0,000001 5 /S-119 Vopak schepen 2562546 5920255 10 - - - 0,443 8760 0,000001 5 /S-121 Vopak schepen 256246 5920255 10 - - - 0,443 8760 0,000001 5 /S-122 Vopak schepen 2563436 591808 10 - - - 0,443 8760 0,000001 5						-	-	-	-					-
/S-115 Vopak schepen 2561072 5922355 10 - - - 0,443 8760 0,000001 5 /S-116 Vopak schepen 2561366 5921935 10 - - - 0,443 8760 0,000001 5 /S-117 Vopak schepen 2561866 5921935 10 - - - 0,443 8760 0,000001 5 /S-118 Vopak schepen 2561956 5921095 10 - - - 0,443 8760 0,000001 5 /S-119 Vopak schepen 2562546 5920255 10 - - - 0,443 8760 0,000001 5 /S-121 Vopak schepen 2562546 5920255 10 - - - 0,443 8760 0,000001 5 /S-122 Vopak schepen 2563136 5919416 10 - - - 0,443 8760 0,000001 5 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td></tr<>						-	-	-	-					-
/S-116 Vopak schepen 2561366 5921935 10 - - - 0,443 8760 0,000001 5 /S-117 Vopak schepen 2561662 5921515 10 - - - 0,443 8760 0,000001 5 /S-118 Vopak schepen 2561956 5921095 10 - - - 0,443 8760 0,000001 5 /S-119 Vopak schepen 2562252 5920676 10 - - 0,443 8760 0,000001 5 /S-121 Vopak schepen 2562546 5920255 10 - - - 0,443 8760 0,000001 5 /S-121 Vopak schepen 2563136 5919416 10 - - - 0,443 8760 0,000001 5 /S-123 Vopak schepen 2563136 5918096 10 - - - 0,443 8760 0,000001 5 /S-12						-	-	-						-
/S-117 Vopak schepen 2561662 5921515 10 - - - 0,443 8760 0,000001 5 /S-118 Vopak schepen 2561956 5921095 10 - - - 0,443 8760 0,000001 5 /S-119 Vopak schepen 2562252 5920676 10 - - - 0,443 8760 0,000001 5 /S-120 Vopak schepen 2562546 5920255 10 - - 0,443 8760 0,000001 5 /S-121 Vopak schepen 2563136 5919416 10 - - 0,443 8760 0,000001 5 /S-122 Vopak schepen 2563136 5918416 10 - - - 0,443 8760 0,000001 5 /S-123 Vopak schepen 2563719 5918572 10 - - - 0,443 8760 0,000001 5 /S-124						-	-	-						-
/S-118 Vopak schepen 2561956 5921095 10 - - - 0,443 8760 0,000001 5 /S-119 Vopak schepen 2562252 5920676 10 - - - 0,443 8760 0,000001 5 /S-120 Vopak schepen 2562546 5920255 10 - - - 0,443 8760 0,000001 5 /S-121 Vopak schepen 2562842 5919836 10 - - - 0,443 8760 0,000001 5 /S-122 Vopak schepen 2563136 5919416 10 - - - 0,443 8760 0,000001 5 /S-124 Vopak schepen 2563719 5918572 10 - - - 0,443 8760 0,000001 5 /S-125 Vopak schepen 2563716 5918572 10 - - - 0,443 8760 0,000001 5 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td></tr<>						-	-	-						-
/S-119 Vopak schepen 2562252 5920676 10 - - - 0,443 8760 0,000001 5 /S-120 Vopak schepen 2562546 5920255 10 - - - 0,443 8760 0,000001 5 /S-121 Vopak schepen 2562842 5919836 10 - - - 0,443 8760 0,000001 5 /S-122 Vopak schepen 2563432 5918996 10 - - - 0,443 8760 0,000001 5 /S-123 Vopak schepen 2563432 5918999 10 - - 0,443 8760 0,000001 5 /S-124 Vopak schepen 2563916 5918099 10 - - 0,443 8760 0,000001 5 /S-126 Vopak schepen 2564310 5917151 10 - - 0,443 8760 0,000001 5 /S-127 Vopak schepen						-	-	-	-					-
/S-120 Vopak schepen 2562546 5920255 10 - - - 0,443 8760 0,000001 5 /S-121 Vopak schepen 2562842 5919836 10 - - - 0,443 8760 0,000001 5 /S-122 Vopak schepen 2563136 5919416 10 - - - 0,443 8760 0,000001 5 /S-123 Vopak schepen 2563432 5918996 10 - - 0,443 8760 0,000001 5 /S-124 Vopak schepen 2563719 5918572 10 - - 0,443 8760 0,000001 5 /S-125 Vopak schepen 2564113 5917625 10 - - 0,443 8760 0,000001 5 /S-127 Vopak schepen 2564113 5917625 10 - - 0,443 8760 0,000001 5 /S-128 Vopak schepen 2564507						-	-	-	-					-
/S-121 Vopak schepen 2562842 5919836 10 - - - 0,443 8760 0,000001 5 /S-122 Vopak schepen 2563136 5919416 10 - - - 0,443 8760 0,000001 5 /S-123 Vopak schepen 2563432 5918996 10 - - - 0,443 8760 0,000001 5 /S-124 Vopak schepen 2563719 5918572 10 - - 0,443 8760 0,000001 5 /S-125 Vopak schepen 256316 5918099 10 - - 0,443 8760 0,000001 5 /S-125 Vopak schepen 2564113 5917151 10 - - 0,443 8760 0,000001 5 /S-128 Vopak schepen 2564507 5916678 10 - - 0,443 8760 0,000001 5 /S-129 Vopak schepen 2564902<						-	-	-	-					-
/S-122 Vopak schepen 2563136 5919416 10 - - - 0,443 8760 0,000001 5 /S-123 Vopak schepen 2563432 5918996 10 - - - 0,443 8760 0,000001 5 /S-124 Vopak schepen 2563719 5918572 10 - - - 0,443 8760 0,000001 5 /S-125 Vopak schepen 2563719 5918572 10 - - - 0,443 8760 0,000001 5 /S-126 Vopak schepen 2564113 5917625 10 - - - 0,443 8760 0,000001 5 /S-127 Vopak schepen 2564310 5917151 10 - - - 0,443 8760 0,000001 5 /S-128 Vopak schepen 2564507 5916678 10 - - - 0,443 8760 0,000001 5 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td></tr<>						-	-	-	-					-
/S-123 Vopak schepen 2563432 5918996 10 - - - 0,443 8760 0,000001 5 /S-124 Vopak schepen 2563719 5918572 10 - - - 0,443 8760 0,000001 5 /S-125 Vopak schepen 2563916 5918099 10 - - - 0,443 8760 0,000001 5 /S-126 Vopak schepen 2564310 5917151 10 - - - 0,443 8760 0,000001 5 /S-127 Vopak schepen 2564310 5917151 10 - - - 0,443 8760 0,000001 5 /S-128 Vopak schepen 2564507 5916678 10 - - - 0,443 8760 0,000001 5 /S-130 Vopak schepen 2564704 5916204 10 - - - 0,443 8760 0,000001 5 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td></tr<>						-	-	-						-
/S-124 Vopak schepen 2563719 5918572 10 - - - - 4,443 8760 0,000001 5 /S-125 Vopak schepen 2563916 5918099 10 - - - 0,443 8760 0,000001 5 /S-126 Vopak schepen 2564113 5917625 10 - - - 0,443 8760 0,000001 5 /S-127 Vopak schepen 2564510 5917151 10 - - - 0,443 8760 0,000001 5 /S-128 Vopak schepen 2564507 5916678 10 - - 0,443 8760 0,000001 5 /S-129 Vopak schepen 2564704 5916204 10 - - 0,443 8760 0,000001 5 /S-130 Vopak schepen 2564902 5915730 10 - - 0,443 8760 0,000001 5 /S-131						-	-	-						-
/S-125 Vopak schepen 2563916 5918099 10 - - - - 4,443 8760 0,000001 5 /S-126 Vopak schepen 2564113 5917625 10 - - - 0,443 8760 0,000001 5 /S-127 Vopak schepen 2564310 5917151 10 - - - 0,443 8760 0,000001 5 /S-128 Vopak schepen 2564507 5916678 10 - - - 0,443 8760 0,000001 5 /S-139 Vopak schepen 2564507 5916678 10 - - - 0,443 8760 0,000001 5 /S-131 Vopak schepen 2564902 5915730 10 - - - 0,443 8760 0,000001 5 /S-131 Vopak schepen 2565099 5915256 10 - - - 0,443 8760 0,000001 5 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>						-	-	-						-
(S-126 Vopak schepen 2564113 5917625 10 - - - 0,443 8760 0,000001 5 (S-127 Vopak schepen 2564310 5917151 10 - - - 0,443 8760 0,000001 5 (S-128 Vopak schepen 2564507 5916678 10 - - - 0,443 8760 0,000001 5 (S-129 Vopak schepen 2564704 5916204 10 - - - 0,443 8760 0,000001 5 (S-130 Vopak schepen 2564902 5915730 10 - - - 0,443 8760 0,000001 5 (S-131 Vopak schepen 2565099 5915256 10 - - - 0,443 8760 0,000001 5 (S-132 Vopak schepen 2565296 5914782 10 - - - 0,443 8760 0,000001 5 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td></tr<>						-	-	-						-
S-127 Vopak schepen 2564310 5917151 10 - - - - 0,443 8760 0,000001 5						-	-	-						-
S-128						-	-	-						-
S-129 Vopak schepen 2564704 5916204 10 - - - 0,443 8760 0,000001 5 S-130 Vopak schepen 2564902 5915730 10 - - - 0,443 8760 0,000001 5 S-131 Vopak schepen 2565099 5914782 10 - - - 0,443 8760 0,000001 5 S-132 Vopak schepen 2565296 5914782 10 - - - 0,443 8760 0,000001 5 S-133 Vopak schepen 2565493 5914309 10 - - - 0,443 8760 0,000001 5 S-134 Vopak schepen 2565690 5913835 10 - - - 0,443 8760 0,000001 5 S-135 Vopak schepen 2565897 5913361 10 - - - 0,443 8760 0,000001 5						-	-	-						-
S-130 Vopak schepen 2564902 5915730 10 - - - 0,443 8760 0,000001 5 S-131 Vopak schepen 2565099 5915256 10 - - - 0,443 8760 0,000001 5 S-132 Vopak schepen 2565296 5914782 10 - - - 0,443 8760 0,000001 5 S-133 Vopak schepen 2565493 5914309 10 - - - 0,443 8760 0,000001 5 S-134 Vopak schepen 2565690 5913385 10 - - - 0,443 8760 0,000001 5 S-135 Vopak schepen 2565887 5913361 10 - - - 0,443 8760 0,000001 5 S-136 Vopak schepen 2566084 5912888 10 - - - 0,443 8760 0,000001 5 S-137 Vopak schepen 2566281 5912414 10 - - - 0,443 8760 0,000001 5 S-138 Vopak schepen 2566479 5911940 10 - - - 0,443 8760 0,000001 5 S-139 Vopak schepen 2566635 5911459 10 - - - 0,443 8760 0,000001 5 S-139 Vopak schepen 2566635 5911459 10 - - - 0,443 8760 0,000001 5 S-139 Vopak schepen 2566635 5911459 10 - - - 0,443 8760 0,000001 5 S-139 Vopak schepen 2566635 5911459 10 - - - - 0,443 8760 0,000001 5 S-139 Vopak schepen 2566635 5911459 10 - - - - 0,443 8760 0,000001 5 S-139 Vopak schepen 2566635 5911459 10 - - - - - 0,443 8760 0,000001 5 S-139 Vopak schepen 2566635 5911459 10 - - - - - 0,443 8760 0,000001 5 S-139 Vopak schepen 2566635 5911459 10 - - - - - - 0,443 8760 0,000001 5 S-139 Vopak schepen 2566635 5911459 10 - - - - - - 0,443 8760 0,000001 5 S-139 Vopak schepen 2566635 5911459 10 - - - - - - 0,443 8760 0,000001 5 S-139 Vopak schepen 2566635 5911459 10 - - - - - - - 0,443 8760 0,000001 5 S-139 Vopak schepen 2566635 5911459 10 - - - - - - - - -						-	-	-		-,		-,		-
S-131 Vopak schepen 2565099 5915256 10 - - - 0,443 8760 0,000001 5						-	-	-	-					-
S-132 Vopak schepen 2565296 5914782 10 - - - 0,443 8760 0,000001 5						-	-	-	-	-,				-
(S-133) Vopak schepen 2565493 5914309 10 - - - - 0,443 8760 0,000001 5 (S-134) Vopak schepen 2565690 5913835 10 - - - 0,443 8760 0,000001 5 (S-135) Vopak schepen 2566084 5912888 10 - - - 0,443 8760 0,000001 5 (S-136) Vopak schepen 2566084 5912848 10 - - - 0,443 8760 0,000001 5 (S-137) Vopak schepen 2566281 5912414 10 - - - 0,443 8760 0,000001 5 (S-138) Vopak schepen 2566479 5911459 10 - - - 0,443 8760 0,000001 5 (S-138) Vopak schepen 2566635 5911459 10 - - - 0,443 8760 0,000001 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td></t<>						-	-	-						-
/S-134 Vopak schepen 2565690 5913835 10 - - - 0,443 8760 0,000001 5 /S-135 Vopak schepen 2565887 5913361 10 - - - 0,443 8760 0,000001 5 /S-136 Vopak schepen 2566084 5912881 10 - - - 0,443 8760 0,000001 5 /S-137 Vopak schepen 2566281 5912414 10 - - - 0,443 8760 0,000001 5 /S-138 Vopak schepen 2566479 5911940 10 - - - 0,443 8760 0,000001 5 /S-139 Vopak schepen 2566635 5911459 10 - - - 0,443 8760 0,000001 5						-	-	-						
/S-135 Vopak schepen 2565887 5913361 10 - - - 0,443 8760 0,000001 5 /S-136 Vopak schepen 2566084 5912888 10 - - - 0,443 8760 0,000001 5 /S-137 Vopak schepen 2566281 5912414 10 - - - 0,443 8760 0,000001 5 /S-138 Vopak schepen 2566479 5911459 10 - - - 0,443 8760 0,000001 5 /S-139 Vopak schepen 256635 5911459 10 - - - 0,443 8760 0,000001 5						-	-	-						-
/S-136 Vopak schepen 2566084 5912888 10 - - - - 0,443 8760 0,000001 5 /S-137 Vopak schepen 2566281 5912414 10 - - - - 0,443 8760 0,000001 5 /S-138 Vopak schepen 2566479 5911940 10 - - - 0,443 8760 0,000001 5 /S-139 Vopak schepen 2566635 5911459 10 - - - 0,443 8760 0,000001 5						-	-	-						-
/S-137 Vopak schepen 2566281 5912414 10 0,443 8760 0,000001 5 /S-138 Vopak schepen 2566479 5911940 10 0,443 8760 0,000001 5 /S-139 Vopak schepen 2566635 5911459 10 0,443 8760 0,000001 5						-	-	-						-
/S-138 Vopak schepen 2566479 5911940 10 0,443 8760 0,000001 5 /S-139 Vopak schepen 2566635 5911459 10 0,443 8760 0,000001 5						-	-	-	-					-
/S-139 Vopak schepen 2566635 5911459 10 0,443 8760 0,000001 5						-	-	-	-					-
• • • • • • • • • • • • • • • • • • • •						-	-	-						-
/S-140 Vonak schenen 2566631 5910946 10 0.443 8760 0.00001 5	/S-139 /S-140	Vopak schepen Vopak schepen	2566635 2566631	5911459 5910946	10 10	-	-	-		0,443 0,443	8760 8760	0,000001	5	-

Anhang B

Räumliche Verteilung der NOx-Immissions-Zusatz- und Gesamtbelastung im Betrachtungsbereich

Abbildung 51. NO_χ-Immissions-Zusatzbelastung in μg/m³ im Betrachtungsbereich – IST-ZUSTAND

Abbildung 52. NO_χ-Immissions-Zusatzbelastung in μg/m³ im Betrachtungsbereich – PROGNOSE-NULLFALL

Abbildung 53. NO_χ-Immissions-Gesamtbelastung in μg/m³ im Betrachtungsbereich – PROGNOSE-NULLFALL

Abbildung 54. NO_X-Immissions-Zusatzbelastung in µg/m³ im Betrachtungsbereich – BAUPHASE

Abbildung 55. NO_x-Immissions-Gesamtbelastung in μg/m³ im Betrachtungsbereich – BAUPHASE

Abbildung 56. NO_X-Immissions-Zusatzbelastung in μg/m³ im Betrachtungsbereich – PROGNOSE-AUSBAUFALL

Abbildung 57. NO_x-Immissions-Gesamtbelastung in μg/m³ im Betrachtungsbereich – PROGNOSE-AUSBAUFALL

Abbildung 58. NO_χ-Immissions-Zusatzbelastung in μg/m³ im Betrachtungsbereich – PROGNOSE-AUSBAUFALL inkl. ANDERER VORHABEN

Abbildung 59. NO_χ-Immissions-Gesamtbelastung in μg/m³ im Betrachtungsbereich – PROGNOSE-AUSBAUFALL inkl. ANDERER VORHABEN

Anhang C

Räumliche Verteilung der N-Depositions-Zusatz- und Gesamtbelastung im Betrachtungsbereich

Abbildung 60. N-Depositions-Zusatzbelastung in g/(ha × a) im Betrachtungsbereich – IST-ZUSTAND

Abbildung 61. N-Depositions-Zusatzbelastung in g/(ha × a) im Betrachtungsbereich – PROGNOSE-NULLFALL

Abbildung 62. N-Depositions-Gesamtbelastung in g/(ha × a) im Betrachtungsbereich – PROGNOSE-NULLFALL

Abbildung 63. N-Depositions-Zusatzbelastung in $g/(ha \times a)$ im Betrachtungsbereich – BAUPHASE

Abbildung 64. N-Depositions-Gesamtbelastung in g/(ha × a) im Betrachtungsbereich – BAUPHASE

Abbildung 65. N-Depositions-Zusatzbelastung in g/(ha × a) im Betrachtungsbereich – PROGNOSE-AUSBAUFALL

Abbildung 66. N-Depositions-Gesamtbelastung in g/(ha × a) im Betrachtungsbereich – PROGNOSE-AUSBAUFALL

Abbildung 67. N-Depositions-Zusatzbelastung in g/(ha × a) im Betrachtungsbereich – PROGNOSE-AUSBAUFALL inkl. ANDERER VORHABEN

Abbildung 68. N-Depositions-Gesamtbelastung in g/(ha × a) im Betrachtungsbereich – PROGNOSE-AUSBAUFALL inkl. ANDERER VORHABEN